T. Asahara, A. Kawamoto, and H. Masuda, Concise review: Circulating endothelial progenitor cells for vascular medicine, Stem Cells, vol.29, pp.1650-1655, 2017.

Z. Raval and D. W. Losordo, Cell therapy of peripheral arterial disease: from experimental findings to clinical trials, Circ. Res, vol.112, pp.1288-1302, 2013.

K. Banno and M. C. Yoder, Tissue regeneration using endothelial colony-forming cells: Promising cells for vascular repair, Pediatr. Res, 2017.

A. Kebir, CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo, Circ. Res, vol.107, pp.66-75, 2010.

K. Harhouri, Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia, Blood, vol.115, pp.3843-3851, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01827654

R. Scientific, , vol.8, p.9387, 2018.

J. Stalin, Soluble CD146 boosts therapeutic effect of endothelial progenitors through proteolytic processing of short CD146 isoform, Cardiovasc. Res, vol.111, pp.240-251, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456844

R. Palermo, S. Checquolo, D. Bellavia, C. Talora, and I. Screpanti, The molecular basis of notch signaling regulation: a complex simplicity, Curr. Mol. Med, vol.14, pp.34-44, 2014.

A. H. Nwabo-kamdje, Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog, Cancer Biol. Med, vol.14, pp.109-120, 2017.

E. K. Onyido, E. Sweeney, and A. S. Nateri, Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches, Mol. Cancer, vol.15, p.56, 2016.

I. Ben-porath and R. A. Weinberg, The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol, vol.37, pp.961-976, 2005.

F. Bringold and M. Serrano, Tumor suppressors and oncogenes in cellular senescence, Exp. Gerontol, vol.35, pp.317-329, 2000.

A. Richart, MicroRNA-21 coordinates human multipotent cardiovascular progenitors therapeutic potential, Stem Cells Dayt. Ohio, vol.32, pp.2908-2922, 2014.

N. M. Kane, Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells, Stem Cells Dayt. Ohio, vol.30, pp.643-654, 2012.

Y. Bennis, Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential, J. Thromb. Haemost. JTH, vol.10, pp.1914-1928, 2012.

F. Zemani, Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.644-650, 2008.

Z. Yu, Y. Zou, J. Fan, C. Li, and L. Ma, Notch1 is associated with the differentiation of human bone marrow-derived mesenchymal stem cells to cardiomyocytes, Mol. Med. Rep, vol.14, pp.5065-5071, 2016.

L. Zhu, Z. Ruan, Y. Yin, and G. Chen, Expression and significance of DLL4-Notch signaling pathway in the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyocytes induced by 5-azacytidine, Cell Biochem. Biophys, vol.71, pp.249-253, 2015.

P. Apostolou, Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells, J. Recept. Signal Transduct. Res, vol.33, pp.353-358, 2013.

K. Takahashi, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, vol.131, pp.861-872, 2007.

C. Y. Leung and M. Zernicka-goetz, Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway dependent and -independent mechanisms, Nat Commun, vol.4, p.2251, 2013.

L. Li and C. M. Fan, A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence, Cell Rep, vol.21, issue.5, pp.1253-1266, 2017.

G. G. Jinesh, G. C. Manyam, C. O. Mmeje, K. A. Baggerly, and A. M. Kamat, Surface PD-L1, E-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis, Sci Rep, vol.7, issue.1, p.9602, 2017.

H. J. Joo, Human endothelial colony forming cells from adult peripheral blood have enhanced sprouting angiogenic potential through up-regulating VEGFR2 signaling, Int J Cardiol, vol.197, pp.33-43, 2015.

C. Lu, Z. Shan, J. Hong, and L. Yang, MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/ AKT signaling pathway in non-small cell lung cancer metastasis, Int. J. Oncol, vol.51, pp.235-244, 2017.

H. Liu, Y. Pan, X. Han, J. Liu, and R. Li, MicroRNA-216a promotes the metastasis and epithelial-mesenchymal transition of ovarian cancer by suppressing the PTEN/AKT pathway, Onco Targets Ther, vol.10, pp.2701-2709, 2017.

B. Li, miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-?B/COX-2 activation, Chem. Biol. Interact, vol.277, pp.33-42, 2017.

K. E. Paschalaki, Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence, Stem CellsDayt. Ohio, vol.31, pp.2813-2826, 2013.

M. R. De-pascale, Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control, Int. J. Stem Cells, vol.9, pp.137-144, 2016.

C. Dubois, Differential effects of progenitor cell populations on left ventricular remodelling and myocardial neovascularization after myocardial infarction, J Am CollCardiol, vol.55, pp.2232-2243, 2010.

J. Ding, Bioluminescence imaging of transplanted human endothelial colony-forming cells in an ischemic mouse model, Brain Res, vol.1642, pp.209-218, 2016.

T. Schwartz, Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy, Arterioscler Thromb Vasc Biol, vol.32, pp.13-21, 2012.

D. Burger, Human endothelial colony-forming cells protect against acute kidney injury: Role of exosomes, Am J Pathol, vol.185, pp.2309-2323, 2015.

R. J. Medina, Outgrowth endothelial cells: Characterization and their potential for reversing ischemic retinopathy, Invest Ophthalmol Vis Sci, vol.51, pp.5906-5913, 2010.

R. J. Medina, Ex vivo expansion of human outgrowth endothelial cells leads to IL-8-mediated replicative senescence and impaired vasoreparative function, Stem Cells, vol.31, pp.1657-1668, 2013.

J. M. Cahoon, Intravitreal AAV2. COMP-Ang1 prevents neurovascular degeneration in a murine model of diabetic retinopathy, Diabetes, vol.64, pp.4247-4259, 2015.

S. Sakimoto, CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect, JCI Insight, vol.2, p.89906, 2017.

D. Santovito, V. Egea, and C. Weber, Small but smart: MicroRNAs orchestrate atherosclerosis development and progression, Biochim. Biophys. Acta, vol.1861, pp.2075-2086, 2016.

L. Liu, MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1? expression, PloS One, vol.6, p.19139, 2011.

F. Fleissner, Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism, Circ. Res, vol.107, pp.138-143, 2010.

C. Sabatel, MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells, PloS One, vol.6, p.16979, 2011.

S. Zhu, MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2, Circ. Res, vol.112, pp.152-164, 2013.

Y. Tu, Ischemic postconditioning-mediated miR-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway, PloS One, vol.8, p.75872, 2013.

D. A. Ingram, Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood, Blood, vol.104, pp.2752-2760, 2004.

T. Korff, S. Kimmina, G. Martiny-baron, and H. G. Augustin, Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness, FASEB. J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.15, pp.447-457, 2001.

N. Bardin, CD146 and its soluble form regulate monocyte transendothelial migration, Arterioscler. Thromb. Vasc. Biol, vol.29, pp.746-753, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428932