T. Kalogeris, C. P. Baines, M. Krenz, and R. J. Korthuis, Chapter Six -Cell Biology of Ischemia/Reperfusion Injury, Jeon KWBT, et al, vol.298, pp.229-317

E. J. Benjamin, M. J. Blaha, and S. E. Chiuve, Heart disease and stroke statistics-2017 update: a report from the American Heart Association, Circulation, vol.135, pp.146-603, 2017.

A. Moretti, F. Ferrari, and R. F. Villa, Neuroprotection for ischaemic stroke: current status and challenges, Pharmacol Ther, vol.146, pp.23-34, 2015.

H. Zaidi and R. Prasad, Advances in multimodality molecular imaging, J Med Phys, vol.34, pp.122-128, 2009.

M. M. Khalil, J. L. Tremoleda, T. B. Bayomy, and W. Gsell, Molecular SPECT imaging: an overview, Int J Mol Imaging, p.796025, 2011.

G. Hendrikx, S. Voo, M. Bauwens, M. J. Post, and F. M. Mottaghy, SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease, Eur J Nucl Med Mol Imaging, vol.43, pp.2433-2447, 2016.

K. Aase, M. Ernkvist, and L. Ebarasi, Angiomotin regulates endothelial cell migration during embryonic angiogenesis, Genes Dev, vol.21, pp.2055-2068, 2007.

M. Arigoni, G. Barutello, and S. Lanzardo, A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors, Angiogenesis, vol.15, pp.305-316, 2012.

T. Levchenko, N. Veitonmäki, and A. Lundkvist, Therapeutic antibodies targeting angiomotin inhibit angiogenesis in vivo, FASEB J, vol.22, pp.880-889, 2008.

M. Lv, Y. Shen, and J. Yang, Angiomotin family members: Oncogenes or tumor suppressors?, Int J Biol Sci, vol.13, pp.772-781, 2017.

B. Troyanovsky, T. Levchenko, G. Månsson, O. Matvijenko, and L. Holmgren, Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation, J Cell Biol, vol.152, pp.1247-1254, 2001.

J. Stalin, K. Harhouri, and L. Hubert, Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin, J Biol Chem, vol.288, pp.8991-9000, 2013.

N. Bardin, V. Francès, V. Combes, J. Sampol, F. Dignat-george et al., Biosynthesis and production of a soluble form in human cultured endothelial cells, FEBS Lett, vol.421, pp.12-14, 1998.

N. Bardin, V. Moal, and F. Anfosso, Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration, Thromb Haemost, vol.90, pp.915-920, 2003.

K. Harhouri, A. Kebir, and B. Guillet, Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia, Blood, vol.115, pp.3843-3851, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01827654

J. Stalin, M. Nollet, and P. Garigue, Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors, Oncogene, vol.35, pp.5489-5500, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456904

M. Arrigo, Q. A. Truong, and D. Onat, Soluble CD146 is a novel marker of systemic congestion in heart failure patients: an experimental mechanistic and transcardiac clinical study, Clin Chem, vol.63, pp.386-393, 2016.

E. Gayat, A. Caillard, and S. Laribi, Soluble CD146, a new endothelial biomarker of acutely decompensated heart failure, Int J Cardiol, vol.199, pp.241-247, 2015.

T. Ito, N. Tamura, and S. Okuda, Elevated serum levels of soluble CD146 in patients with systemic sclerosis, Clin Rheumatol, vol.36, pp.119-124, 2017.

E. Kaspi, X. Heim, and B. Granel, Identification of CD146 as a novel molecular actor involved in systemic sclerosis, J Allergy Clin Immunol, vol.140, pp.1448-1451, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01778289

P. Kubena, M. Arrigo, and J. Parenica, Plasma levels of soluble CD146 reflect the severity of pulmonary congestion better than brain natriuretic peptide in acute coronary syndrome, Ann Lab Med, vol.36, pp.300-305, 2016.

E. Nomikou, A. Alexopoulou, and L. Vasilieva, Soluble CD146, a novel endothelial marker, is related to the severity of liver disease, Scand J Gastroenterol, vol.50, pp.577-583, 2015.

Y. N. Qian, Y. T. Luo, and H. X. Duan, Adhesion molecule CD146 and its soluble form correlate well with carotid atherosclerosis and plaque instability, CNS Neurosci Ther, vol.20, pp.438-445, 2014.

S. Dogansen, A. Helvaci, M. Adas, and S. Onal, The relationship between early atherosclerosis and endothelial dysfunction in type 1 diabetic patients as evidenced by measurement of carotid intima-media thickness and soluble CD146 levels: a cross sectional study, Cardiovasc Diabetol, vol.12, p.153, 2013.

N. Bardin, M. Blot-chabaud, and N. Despoix, CD146 and its soluble form regulate monocyte transendothelial migration, Arterioscler Thromb Vasc Biol, vol.29, pp.746-753, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428932

Y. Hamada, K. Gonda, and M. Takeda, In vivo imaging of the molecular distribution of the VEGF receptor during angiogenesis in a mouse model of ischemia In vivo imaging of the molecular distribution of the VEGF receptor during angiogenesis in a mouse model of ischemia, Blood, vol.118, pp.93-101, 2011.

H. Wu, Y. Liu, and G. Wang, Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome, Sci Rep, vol.6, p.35004, 2016.

Y. Chen, K. Chen, and M. Su, Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea, PLoS One, vol.12, p.176575, 2017.

M. Ernkvist, O. Birot, and I. Sinha, Differential roles of p80-and p130-angiomotin in the switch between migration and stabilization of endothelial cells, Biochim Biophys Acta -Mol Cell Res, vol.1783, pp.429-437, 2008.

M. Ernkvist, K. Aase, and C. Ukomadu, p130-Angiomotin associates to actin and controls endothelial cell shape, FEBS J, vol.273, pp.2000-2011, 2006.

N. Bardin, F. Anfosso, and J. M. Massé, Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion, Blood, vol.98, pp.3677-3684, 2001.

C. Love, M. B. Tomas, G. G. Tronco, and C. J. Palestro, FDG PET of infection, Radiographics, vol.25, pp.1357-1368, 2005.

J. Hua, L. W. Dobrucki, and M. M. Sadeghi, Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at ?v?3 integrin after murine hindlimb ischemia, Circulation, vol.111, pp.3255-3260, 2005.

K. H. Lee, K. H. Jung, and S. H. Song, Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs, J Nucl Med, vol.46, pp.472-478, 2005.

J. M. Jeong, M. K. Hong, and Y. S. Chang, Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice, J Nucl Med, vol.49, pp.830-836, 2008.

J. K. Willmann, K. Chen, and H. Wang, Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography, Circulation, vol.117, pp.915-922, 2008.

C. A. Ferreira, R. Hernandez, Y. Yang, H. F. Valdovinos, J. W. Engle et al., ImmunoPET of CD146 in a murine hindlimb ischemia model, Mol Pharm, vol.15, pp.3434-3441, 2018.

H. Orbay, H. Hong, and J. M. Koch, Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105, Am J Transl Res, vol.6, pp.54-63, 2013.