S. Lodato and P. Arlotta, Generating neuronal diversity in the mammalian cerebral cortex, Annu Rev Cell Dev Biol, vol.31, pp.699-720, 2015.

S. C. Noctor, V. Martinez-cerdeno, L. Ivic, and A. R. Kriegstein, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nat Neurosci, vol.7, issue.2, pp.136-144, 2004.

S. He, Z. Li, S. Ge, Y. C. Yu, and S. H. Shi, Inside-out radial migration facilitates lineage-dependent neocortical microcircuit assembly, Neuron, vol.86, issue.5, pp.1159-1166, 2015.

A. K. Mcallister, Conserved cues for axon and dendrite growth in the developing cortex, Neuron, vol.33, issue.1, pp.2-4, 2002.

O. Marin, Cellular and molecular mechanisms controlling the migration of neocortical interneurons, Eur J Neurosci, vol.38, issue.1, pp.2019-2029, 2013.

E. Parrini, V. Conti, W. B. Dobyns, and R. Guerrini, Genetic basis of brain malformations, Mol Syndromol, vol.7, issue.4, pp.220-233, 2016.

O. Marin, Interneuron dysfunction in psychiatric disorders, Nat Rev Neurosci, vol.13, issue.2, pp.107-120, 2012.

R. Guerrini and W. B. Dobyns, Malformations of cortical development: clinical features and genetic causes, Lancet Neurol, vol.13, issue.7, pp.710-726, 2014.

K. A. Orlova, W. E. Parker, and G. G. Heuer, STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice, J Clin Invest, vol.120, issue.5, pp.1591-1602, 2010.

G. M. Mirzaa, C. D. Campbell, and N. Solovieff, Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism, JAMA Neurol, vol.73, issue.7, pp.836-845, 2016.

T. Ribierre, C. Deleuze, and A. Bacq, Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy, J Clin Invest, vol.128, issue.6, pp.2452-2458, 2018.

A. M. D'gama, M. B. Woodworth, and A. A. Hossain, Somatic mutations activating the mtor pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias, Cell Rep, vol.21, issue.13, pp.3754-3766, 2017.

L. Ryskalin, G. Lazzeri, and M. Flaibani, mTOR-dependent cell proliferation in the brain, Biomed Res Int, p.7082696, 2017.

M. Ka, G. Condorelli, J. R. Woodgett, and W. Y. Kim, mTOR regulates brain morphogenesis by mediating GSK3 signaling, Development, vol.141, issue.21, pp.4076-4086, 2014.

A. Poduri, G. D. Evrony, and X. Cai, Somatic activation of AKT3 causes hemispheric developmental brain malformations, Neuron, vol.74, issue.1, pp.41-48, 2012.

A. Roy, J. Skibo, and F. Kalume, Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy, Elife, vol.4, 2015.

J. S. Lim, W. I. Kim, and H. C. Kang, Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy, Nat Med, vol.21, issue.4, pp.395-400, 2015.

S. T. Baek, B. Copeland, and E. J. Yun, An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development, Nat Med, vol.21, issue.12, pp.1445-1454, 2015.

L. S. Hsieh, J. H. Wen, and K. Claycomb, Convulsive seizures from experimental focal cortical dysplasia occur independently of cell misplacement, Nat Commun, vol.7, p.11753, 2016.

J. A. French, J. A. Lawson, and Z. Yapici, Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study, Lancet, vol.388, pp.2153-2163, 2016.

G. Mirzaa, D. A. Parry, and A. E. Fry, De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, Nat Genet, vol.46, issue.5, pp.510-515, 2014.

F. S. Alkuraya, X. Cai, and C. Emery, Human mutations in NDE1 cause extreme microcephaly with lissencephaly

, Am J Hum Genet, vol.88, issue.5, pp.536-547, 2011.

J. Bond, E. Roberts, and K. Springell, A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size, Nat Genet, vol.37, issue.4, pp.353-355, 2005.

J. H. Sir, A. R. Barr, and A. K. Nicholas, A primary microcephaly protein complex forms a ring around parental centrioles, Nat Genet, vol.43, issue.11, pp.1147-1153, 2011.

M. S. Hussain, S. M. Baig, and S. Neumann, A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function, Am J Hum Genet, vol.90, issue.5, pp.871-878, 2012.

M. S. Hussain, S. M. Baig, and S. Neumann, CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly, Hum Mol Genet, vol.22, issue.25, pp.5199-5214, 2013.

H. G. Farag, S. Froehler, and K. Oexle, Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation, Orphanet J Rare Dis, vol.8, p.178, 2013.

V. Marthiens, M. A. Rujano, C. Pennetier, S. Tessier, P. Paul-gilloteaux et al., Centrosome amplification causes microcephaly, Nat Cell Biol, vol.15, issue.7, pp.731-740, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01712239

R. E. Mcintyre, L. Chavali, P. Ismail, and O. , Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome, PLoS Genet, vol.8, issue.11, p.1003022, 2012.

J. L. Fish, Y. Kosodo, W. Enard, S. Paabo, and W. B. Huttner, Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells, Proc Natl Acad Sci, vol.103, issue.27, pp.10438-10443, 2006.

Y. J. Yang, A. E. Baltus, and R. S. Mathew, Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation, Cell, vol.151, issue.5, pp.1097-1112, 2012.

S. Awad, M. S. Al-dosari, A. , and N. , Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis, Hum Mol Genet, vol.22, issue.11, pp.2200-2213, 2013.

R. Gruber, Z. Zhou, M. Sukchev, T. Joerss, P. O. Frappart et al., MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway, Nat Cell Biol, vol.13, issue.11, pp.1325-1334, 2011.

M. Kielar, F. P. Tuy, and S. Bizzotto, Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human, Nat Neurosci, vol.17, issue.7, pp.923-933, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514452

V. L. Sheen, P. H. Dixon, and J. W. Fox, Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females, Hum Mol Genet, vol.10, issue.17, pp.1775-1783, 2001.

F. Nakamura, T. P. Stossel, and J. H. Hartwig, The filamins: organizers of cell structure and function, Cell Adh Migr, vol.5, issue.2, pp.160-169, 2011.

A. Carabalona, S. Beguin, and E. Pallesi-pocachard, A glial origin for periventricular nodular heterotopia caused by impaired expression of Filamin-A, Hum Mol Genet, vol.21, issue.5, pp.1004-1017, 2012.

D. T. Pilz, N. Matsumoto, and S. Minnerath, LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation, Hum Mol Genet, vol.7, issue.13, pp.2029-2037, 1998.

E. V. Haverfield, A. J. Whited, K. S. Petras, W. B. Dobyns, and S. Das, Intragenic deletions and duplications of the LIS1 and DCX genes: a major diseasecausing mechanism in lissencephaly and subcortical band heterotopia, Eur J Hum Genet, vol.17, issue.7, pp.911-918, 2009.

N. Matsumoto, R. J. Leventer, and J. A. Kuc, Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia, Eur J Hum Genet, vol.9, issue.1, pp.5-12, 2001.

J. Baumbach, A. Murthy, and M. A. Mcclintock, Lissencephaly-1 is a context-dependent regulator of the human dynein complex, Elife, vol.6, 2017.

D. Horesh, T. Sapir, and F. Francis, Doublecortin, a stabilizer of microtubules, Hum Mol Genet, vol.8, issue.9, pp.1599-1610, 1999.

B. T. Schaar, K. Kinoshita, and S. K. Mcconnell, Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons, Neuron, vol.41, issue.2, pp.203-213, 2004.

M. Caspi, R. Atlas, A. Kantor, T. Sapir, and O. Reiner, Interaction between LIS1 and doublecortin, two lissencephaly gene products, Hum Mol Genet, vol.9, issue.15, pp.2205-2213, 2000.

J. Bai, R. L. Ramos, J. B. Ackman, A. M. Thomas, R. V. Lee et al., RNAi reveals doublecortin is required for radial migration in rat neocortex, Nat Neurosci, vol.6, issue.12, pp.1277-1283, 2003.

J. W. Tsai, Y. Chen, A. R. Kriegstein, and R. B. Vallee, LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages, J Cell Biol, vol.170, issue.6, pp.935-945, 2005.

M. Yamada, Y. Yoshida, and D. Mori, Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly, Nat Med, vol.15, issue.10, pp.1202-1207, 2009.

V. Fernandez, C. Llinares-benadero, and V. Borrell, Cerebral cortex expansion and folding: what have we learned?, EMBO J, vol.35, issue.10, pp.1021-1044, 2016.

X. H. Jaglin, K. Poirier, and Y. Saillour, Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria, Nat Genet, vol.41, issue.6, pp.746-752, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00404834

R. Guerrini, D. Mei, D. M. Cordelli, D. Pucatti, E. Franzoni et al., Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations, Eur J Hum Genet, vol.20, issue.9, pp.995-998, 2012.

P. M. Campeau, D. Kasperaviciute, and J. T. Lu, The genetic basis of DOORS syndrome: an exome-sequencing study, Lancet Neurol, vol.13, issue.1, pp.44-58, 2014.

S. Balestrini, M. Milh, and C. Castiglioni, TBC1D24 genotype-phenotype correlation: Epilepsies and other neurologic features, Neurology, vol.87, issue.1, pp.77-85, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01469059

A. Falace, E. Buhler, and M. Fadda, TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway, Proc Natl Acad Sci, vol.111, issue.6, pp.2337-2342, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01787600

T. Willer, H. Lee, and M. Lommel, ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome, Nat Genet, vol.44, issue.5, pp.575-580, 2012.

D. Beltran-valero-de-bernabe, S. Currier, and A. Steinbrecher, Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome, Am J Hum Genet, vol.71, issue.5, pp.1033-1043, 2002.

J. Van-reeuwijk, P. K. Grewal, and M. A. Salih, Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome, Hum Genet, vol.121, issue.6, pp.685-690, 2007.

T. D. Myshrall, S. A. Moore, and A. P. Ostendorf, Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex, J Neuropathol Exp Neurol, vol.71, issue.12, pp.1047-1063, 2012.

H. Hu, Y. Yang, A. Eade, Y. Xiong, and Y. Qi, Breaches of the pial basement membrane and disappearance of the glia limitans during development underlie the cortical lamination defect in the mouse model of muscle-eyebrain disease, J Comp Neurol, vol.501, issue.1, pp.168-183, 2007.

M. R. Ackroyd, C. Whitmore, and S. Prior, Fukutin-related protein alters the deposition of laminin in the eye and brain, J Neurosci, vol.31, issue.36, pp.12927-12935, 2011.

N. Bahi-buisson, K. Poirier, and N. Boddaert, GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex, Brain, vol.133, issue.11, pp.3194-3209, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01668022

R. Luo, S. J. Jeong, J. Z. Strokes, N. Li, S. Piao et al., G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination, Proc Natl Acad Sci, vol.108, issue.31, pp.12925-12930, 2011.

J. B. Ackman, L. Aniksztejn, and V. Crepel, Abnormal network activity in a targeted genetic model of human double cortex, J Neurosci, vol.29, issue.2, pp.313-327, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00483164

F. S. Martineau, S. Sahu, and V. Plantier, Correct laminar positioning in the neocortex influences proper dendritic and synaptic development, Cereb Cortex, vol.28, issue.8, pp.2976-2990, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01962603

D. Lapray, I. Y. Popova, and J. Kindler, Spontaneous epileptic manifestations in a DCX knockdown model of human double cortex, Cereb Cortex, vol.20, issue.11, pp.2694-2701, 2010.

L. F. Petit, M. Jalabert, and E. Buhler, Normotopic cortex is the major contributor to epilepsy in experimental double cortex, Ann Neurol, vol.76, issue.3, pp.428-442, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01059741

G. Y. Cederquist, A. Luchniak, and M. A. Tischfield, An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation, Hum Mol Genet, vol.21, issue.26, pp.5484-5499, 2012.

A. De-la-rossa, C. Bellone, and B. Golding, In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons, Nat Neurosci, vol.16, issue.2, pp.193-200, 2013.

C. Rouaux and P. Arlotta, Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo, Nat Cell Biol, vol.15, issue.2, pp.214-221, 2013.

N. R. Wall, I. R. Wickersham, A. Cetin, M. De-la-parra, and E. M. Callaway, Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus, Proc Natl Acad Sci, vol.107, issue.50, pp.21848-21853, 2010.

B. Zingg, X. L. Chou, and Z. G. Zhang, AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors, Neuron, vol.93, issue.1, pp.33-47, 2017.