C. Baral, Knowledge Representation, Reasoning, and Declarative Problem Solving, 2003.

L. Chebouba, B. Miannay, D. Boughaci, and C. Guziolowski, Discriminate the response of acute myeloid leukemia patients to treatment by using proteomics data and answer set programming, BMC Bioinformatics, vol.19, issue.2, p.59, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01988426

M. Kanehisa and S. Goto, Kegg : Kyoto encyclopedia of genes and genomes, Nucleic Acids Research, vol.28, issue.1, pp.27-30, 2000.

L. Liu, Y. Chang, T. Yang, B. David-p-noren, S. Long et al., Evolution-informed modeling improves outcome prediction for cancers, Evolutionary Applications, vol.10, issue.1, pp.68-76, 2017.

S. Videla, J. Saez-rodriguez, C. Guziolowski, and A. Siegel, caspo : a toolbox for automated reasoning on the response of logical signaling networks families, Bioinformatics, vol.33, issue.6, pp.947-950, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01426880

J. Fages and C. Prud'homme, Making the first solution good !" in ICTAI, 2017.

P. Refalo, Impact-based search strategies for constraint programming, Principles and Practice of Constraint Programming, pp.557-571, 2004.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, Boosting systematic search by weighting constraints, ECAI, pp.146-150, 2004.

L. Michel and P. Van-hentenryck, Activitybased search for black-box constraint programming solvers, CPAIOR, pp.228-243, 2012.

C. Lecoutre, L. Sais, S. Tabary, and V. Vidal, Last conflict based reasoning, Proceedings, ser. Frontiers in Artificial Intelligence and Applications, vol.141, pp.133-137, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00110097

R. M. Haralick and G. L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, IJCAI'79, pp.356-364, 1979.

S. Kadioglu, M. Colena, S. Huberman, and C. Bagley, Optimizing the cloud service experience using constraint programming, Principles and Practice of Constraint Programming, vol.9255, pp.627-637, 2015.

D. Allouche, S. De-givry, G. Katsirelos, T. Schiex, and M. Zytnicki, Anytime hybrid best-first search with tree decomposition for weighted CSP, CP 2015, p.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198361

C. Bessiere and R. Debruyne, Theoretical analysis of singleton arc consistency and its extensions, Artif. Intell, vol.172, issue.1, pp.29-41, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00230949

C. Prud'homme, J. Fages, X. Lorca, C. Solver-documentation, T. Rennes et al., , 2016.

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck et al., Minizinc : towards a standard cp modelling language, CP, pp.529-543, 2007.

. Références,

G. Audemard, J. Lagniez, and L. Simon, Improving Glucose for Incremental SAT Solving with Assumptions : Application to MUS Extraction, Proc. of SAT'13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845496

A. Belov and J. Marques-silva, Accelerating MUS Extraction With Recursive Model Rotation, Proc. of FMCAD'11, 2011.

M. Bienvenu, H. Fargier, and P. Marquis, Knowledge Compilation in the Modal Logic S5, Proc. of AAAI'10, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00624482

A. Biere, M. Heule, H. Van-maaren, and T. Walsh, Handbook of Satisfiability. IOS Edition, 2009.

T. Caridroit, J. Lagniez, D. L. Berre, T. Lima, and V. Montmirail, A SAT-Based Approach for Solving the Modal Logic S5-Satisfiability Problem, Proc. of AAAI'17, 2017.

J. Davies and F. Bacchus, Exploiting the Power of MIP Solvers in MaxSAT, Proc. of SAT'13, 2013.

A. José-dos-reis-morgado, A. S. Ignatiev, and J. Silva, MSCG : Robust Core-Guided Max-SAT Solving, J. SAT, vol.9, 2014.

N. Eén and N. Sörensson, An Extensible SAT-solver, Proc. of SAT'03, 2003.

C. Weidenbach, SPASS Version 3.5, Proc. of CADE'09, 2009.

P. Balsiger, A Benchmark Method for the Propositional Modal Logics K, KT, S4, Journal of Automated Reasoning, vol.24, issue.3, 2000.

T. Eiter, Planning under Incomplete Knowledge, Proc. of CL'00, 2000.

M. Fairtlough and M. Mendler, An Intuitionistic Modal Logic with Applications to the Formal Verification of Hardware, Proc. of CSL'94, 1994.

M. Fitting, Modality and Databases, Proc. of TA-BLEAUX'00, 2000.

D. Götzmann, M. Kaminski, and G. Smolka, Spartacus : A Tableau Prover for Hybrid Logic, ENTCS, vol.262, 2010.

F. Heras, A. Morgado, and J. Marques-silva, CoreGuided Binary Search Algorithms for Maximum Satisfiability, Proc. of AAAI'11, 2011.

J. Hoffmann and R. I. Brafman, Conformant Planning via Heuristic Forward Search : A New Approach. A.I, pp.170-176, 2006.

M. Iser, C. Sinz, and M. Taghdiri, Minimizing Models for Tseitin-Encoded SAT Instances, Proc. of SAT'13, 2013.

S. A. Kripke, Semantical Analysis of Modal Logic I. Normal Propositional Calculi, Zeitschr. math. Logik und Otundlagend. Math, vol.9, issue.56, 1963.

R. E. Ladner, The Computational Complexity of Provability in Systems of Modal Propositional Logic, SIAM Journal of Computation, vol.6, issue.3, 1977.

J. Lagniez, D. L. Berre, T. Lima, and V. Montmirail, On Checking Kripke Models for Modal Logic K, Proc. of PAAR@IJCAR'16, 2016.

J. Lagniez, D. L. Berre, T. Lima, and V. Montmirail, An Assumption-Based Approach for Solving The Minimal S5-Satisfiability Problem, Proc. of IJCAR'18, 2018.

D. , L. Berre, and A. Parrain, The SAT4J library, release 2.2, Journal of SAT, vol.7, issue.2-3, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00868136

S. J. Maher and T. Fischer, The SCIP Optimization Suite 4.0, 2017.

J. Marques-silva and M. Janota, On the Query Complexity of Selecting Few Minimal Sets, ECCC, vol.21, 2014.

F. Massacci and F. M. Donini, Design and Results of TANCS-2000 Non-classical (Modal) Systems Comparison, Proc. of TABLEAUX'00, 2000.

C. Mencía, A. Previti, and J. Marques-silva, LiteralBased MCS Extraction, Proc. of IJCAI'15, 2015.

C. Nalon, U. Hustadt, and C. Dixon, A Resolution-Based Prover for Multimodal K, Proc. of IJCAR'16, 2016.

A. Niveau and B. Zanuttini, Efficient Representations for the Modal Logic S5, Proc. of IJCAI'16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01311642

P. F. Patel-schneider and R. Sebastiani, A New General Method to Generate Random Modal Formulae for Testing Decision Procedures, J.A.I.R, vol.18, 2003.

M. Sakai and H. Nabeshima, Construction of an ROBDD for a PB-Constraint in Band Form and Related Techniques for PB-Solvers, IEICE Transactions, issue.6, p.98, 2015.

L. Simon, D. L. Berre, and E. A. Hirsch, The SAT2002 Competition, vol.43, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00022662

T. Soh and K. Inoue, Identifying Necessary Reactions in Metabolic Pathways by Minimal Model Generation, Proc. of ECAI'10, vol.215, 2010.

A. Tacchella, *SAT System Description, Proc. of DL'99, vol.22, 1999.

T. Murphy, K. Vii, R. Crary, and . Harper, Distributed Control Flow with Classical Modal Logic, Proc. of CSL'05, vol.5, pp.732-767, 2004.

F. Büttner, M. Egea, J. Cabot, and M. Gogolla, Verification of ATL Transformations Using Transformation Models and Model Finders, ICFEM 2012, pp.198-213

A. Silva, Model-driven engineering : A survey supported by the unified conceptual model, Computer Languages, Systems and Structures, vol.43, pp.139-155, 2015.

Z. Diskin, A. Wider, H. Gholizadeh, and K. Czarnecki, Towards a rational taxonomy for increasingly symmetric model synchronization, ICMT 2014, pp.57-73

N. Bjorn, J. Freeman-benson, A. Maloney, and . Borning, An incremental constraint solver, Commun. ACM, vol.33, issue.1, pp.54-63, 1990.

A. Horváth and D. Varró, Dynamic constraint satisfaction problems over models. Software & Systems Modeling, vol.11, pp.385-408, 2012.

R. Imbach, P. Mathis, and P. Schreck, A robust and efficient method for solving point distance problems by homotopy, Math. Program, vol.163, issue.1-2, pp.115-144, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01135230

D. Jackson, Alloy : a lightweight object modelling notation, ACM Transactions on Software Engineering and Methodology (TOSEM), vol.11, issue.2, pp.256-290, 2002.

F. Jouault and O. Beaudoux, Efficient OCL-based Incremental Transformations, 16th International Workshop in OCL and Textual Modeling, pp.121-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399962

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, Atl : A model transformation tool, Science of Computer Programming, vol.72, issue.1, pp.31-39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00483363

M. Kleiner, M. Fabro, and P. Albert, Model search : Formalizing and automating constraint solving in mde platforms, ECMFA 2010, pp.173-188
DOI : 10.1007/978-3-642-13595-8_15

M. Kleiner, M. Fabro, and D. Santos, Transformation as search, ECMFA 2013, pp.54-69
DOI : 10.1007/978-3-642-39013-5_5

URL : https://hal.archives-ouvertes.fr/hal-00913957

K. Kuchcinski, Constraints-driven scheduling and resource assignment, ACM Trans. Des. Autom. Electron. Syst, vol.8, issue.3, pp.355-383, 2003.
DOI : 10.1145/785411.785416

E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke et al., , vol.67, 2014.

N. Macedo, T. Jorge, and A. Cunha, A feature-based classification of model repair approaches, IEEE Transactions on Software Engineering, vol.43, issue.7, pp.615-640, 2017.

N. Macedo and A. Cunha, Least-change bidirectional model transformation with QVT-R and ATL. Software & Systems Modeling, vol.15, pp.783-810, 2016.
DOI : 10.1007/s10270-014-0437-x

URL : http://repositorio.inesctec.pt/bitstream/123456789/4253/1/P-00A-8V2.pdf

F. Menezes, P. Barahona, and P. Codognet, An incremental hierarchical constraint solver, PPCP, vol.93, pp.190-199, 1993.

N. Nethercote, J. Peter, R. Stuckey, S. Becket, . Brand et al., MiniZinc : Towards a standard CP modelling language, International Conference on Principles and Practice of Constraint Programming, pp.529-543, 2007.
DOI : 10.1007/978-3-540-74970-7_38

A. Petter, A. Behring, and M. Mühlhäuser, Solving constraints in model transformations, ICMT 2009, pp.132-147
DOI : 10.1007/978-3-642-02408-5_10

URL : http://atlas.tk.informatik.tu-darmstadt.de/Publications/2009/Petter09SolvingConstraintModelTransformation.pdf

C. Prud'homme, J. Fages, and X. Lorca, Choco Documentation. TASC -LS2N CNRS UMR 6241, 2017.

O. Roussel and C. Lecoutre, XML representation of constraint networks : Format XCSP 2.1. CoRR, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00872825

S. Sen, B. Baudry, and J. Mottu, Automatic Model Generation Strategies for Model Transformation Testing
DOI : 10.1007/978-3-642-02408-5_11

URL : https://hal.archives-ouvertes.fr/inria-00468256

P. , , pp.148-164, 2009.

G. Team, Gecode : Generic constraint development environment, 2006.

D. Varró, G. Bergmann, A. Hegedüs, A. Horváth, I. Ráth et al., Road to a reactive and incremental model transformation platform : three generations of the VIATRA framework. Software & Systems Modeling, vol.15, pp.609-629, 2016.

G. Verfaillie and N. Jussien, Constraint solving in uncertain and dynamic environments : A survey, Constraints, vol.10, issue.3, pp.253-281, 2005.
DOI : 10.1007/s10601-005-2239-9

URL : https://hal.archives-ouvertes.fr/hal-00293900

D. Waltz, Understanding line drawings of scenes with shadows, The Psychology of Computer Vision, page pages, 1975.

M. Wilson and A. Borning, Hierarchical constraint logic programming, The Journal of Logic Programming, vol.16, issue.3, pp.277-318, 1993.
DOI : 10.1016/0743-1066(93)90046-j

URL : https://doi.org/10.1016/0743-1066(93)90046-j

C. Ansótegui, M. L. Bonet, J. Giráldez-cru, and J. Levy, Structure features for SAT instances classification, J. Applied Logic, vol.23, pp.27-39, 2017.

C. Ansótegui, J. Giráldez-cru, and J. Levy, The community structure of SAT formulas, SAT, pp.410-423, 2012.

C. Ansótegui, J. Giráldez-cru, J. Levy, and L. Simon, Using community structure to detect relevant learnt clauses, SAT, pp.238-254, 2015.

G. Audemard, J. Lagniez, B. Mazure, and L. Sais, On freezing and reactivating learnt clauses, SAT, pp.188-200, 2011.

G. Audemard and L. Simon, Predicting learnt clauses quality in modern sat solvers, IJCAI, pp.399-404, 2009.

P. Beame, H. A. Kautz, and A. Sabharwal, Towards understanding and harnessing the potential of clause learning, JAIR, vol.22, pp.319-351, 2004.

A. Biere, Preprocessing and inprocessing techniques in SAT, Hardware and Software : Verification and Testing, p.1, 2011.

A. Biere, Lingeling and friends entering the sat challenge 2012, Proceedings of SAT Challenge 2012 : Solver and Benchmark Descriptions, pp.33-34, 2012.

S. Börzsönyi, D. Kossmann, and K. Stocker, The skyline operator, ICDE, pp.421-430, 2001.

S. Bouker, R. Saidi, S. Ben-yahia, and E. Mephu-nguifo, Mining undominated association rules through interestingness measures, IJAIT, vol.23, issue.04, p.1460011, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02134355

M. Davis, G. Logemann, and D. W. Loveland, A machine program for theorem-proving, Communications of the ACM, vol.5, issue.7, pp.394-397, 1962.

N. Eén and A. Biere, Effective preprocessing in sat through variable and clause elimination, SAT, pp.61-75, 2005.

N. Eén and N. Sörensson, An extensible satsolver, SAT, pp.502-518, 2003.

J. Giráldez-cru and J. Levy, A modularity-based random SAT instances generator, IJCAI, Buenos Aires, pp.1952-1958, 2015.

E. Goldberg and Y. Novikov, Berkmin : A fast and robust sat-solver, Discrete Applied Mathematics, vol.155, issue.12, pp.1549-1561, 2007.

C. P. Gomes and B. Selman, Algorithm portfolios, AIJ, vol.126, issue.1-2, pp.43-62, 2001.

C. P. Gomes, B. Selman, and H. A. Kautz, Boosting combinatorial search through randomization, AAAI/IAAI, pp.431-437, 1998.

L. Guo, S. Jabbour, J. Lonlac, and L. Sais, Diversification by clauses deletion strategies in portfolio parallel SAT solving, ICTAI, pp.701-708, 2014.

F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos et al., The configurable SAT solver challenge (CSSC), vol.243, pp.1-25, 2017.

F. Hutter, L. Xu, H. H. Hoos, and K. Leytonbrown, Algorithm runtime prediction : Methods & evaluation, AIJ, vol.206, pp.79-111, 2014.

S. Jabbour, J. Lonlac, and L. Sais, Extending resolution by dynamic substitution of boolean functions, ICTAI, pp.1029-1034, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00865574

S. Jabbour, J. Lonlac, L. Sais, and Y. Salhi, Revisiting the learned clauses database reduction strategies, 2014.

H. Katebi, K. A. Sakallah, and J. P. Silva, Empirical study of the anatomy of modern sat solvers, SAT, pp.343-356, 2011.

K. Leyton-brown, E. Nudelman, G. Andrew, J. Mcfadden, and Y. Shoham, A portfolio approach to algorithm selection, IJCAI-03, p.1542, 2003.

J. Lonlac and E. M. Nguifo, Towards learned clauses database reduction strategies based on dominance relationship, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01478217

M. Luo, C. Li, F. Xiao, F. Manyà, and Z. Lü, An effective learnt clause minimization approach for CDCL SAT solvers, IJCAI, pp.703-711, 2017.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff : Engineering an efficient sat solver, DAC, pp.530-535, 2001.

Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon, Impact of community structure on SAT solver performance, SAT, pp.252-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00994301

E. Nudelman, K. Leyton-brown, H. H. Hoos, A. Devkar, and Y. Shoham, Understanding random SAT : beyond the clauses-to-variables ratio, CP, pp.438-452, 2004.

F. P. Preparata and M. I. Shamos, Computational Geometry : An Introduction, 1985.

J. P. Silva and K. A. Sakallah, GRASP : A search algorithm for propositional satisfiability, IEEE Trans. Computers, vol.48, issue.5, pp.506-521, 1999.

N. Sörensson and A. Biere, Minimizing learned clauses, SAT, pp.237-243, 2009.

A. Soulet, C. Ra¨?ssira¨?ssi, M. Plantevit, and B. , Cré-milleux. Mining dominant patterns in the sky, ICDM, pp.655-664, 2011.

M. Van-leeuwen and A. Ukkonen, Discovering skylines of subgroup sets, ECML PKDD, pp.272-287, 2013.

D. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evolutionary Computation, vol.1, issue.1, pp.67-82, 1997.

L. Xu, F. Hutter, H. H. Hoos, and K. Leytonbrown, Satzilla : Portfolio-based algorithm selection for SAT, JAIR, vol.32, pp.565-606, 2008.

L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik, Efficient conflict driven learning in boolean satisfiability solver, ICCAD, pp.279-285, 2001.

P. Benchimol, W. Jan-van-hoeve, J. Régin, L. Rousseau, and M. Rueher, Improved filtering for weighted circuit constraints, Constraints, vol.17, issue.3, pp.205-233, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01099501

N. Briot, C. Bessiere, and P. Vismara, A constraint-based approach to the differential harvest problem, Proc. 21st International Conference on Principles and Practice of Constraint Programming, vol.9255, pp.541-556, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01275591

N. Briot, C. Bessiere, and P. Vismara, Une contrainte de circuit adaptée aux tournées multiples, Actes desTreizì emes Journées Francophones de Programmation par Contraintes (JFPC 2017), pp.137-144, 2017.

E. Carrillo, A. Matese, J. Rousseau, and B. , Tisseyre. Use of multispectral airborne imagery to improve yield sampling in viticulture. Precision Agriculture, vol.17, pp.74-92, 2015.

Y. Caseau and F. Laburthe, Solving small tsps with constraints, Logic Programming, Proceedings of the Fourteenth International Conference on Logic Programming, pp.316-330, 1997.

S. Ducomman, H. Cambazard, and B. Penz, Alternative filtering for the weighted circuit constraint : Comparing lower bounds for the TSP and solving TSPTW, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp.3390-3396, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01420964

F. Focacci, A. Lodi, and M. Milano, Embedding relaxations in global constraints for solving TSP and TSPTW, Annals of Mathematics and Artificial Intelligence, vol.34, issue.4, pp.291-311, 2002.

W. Kennard and L. A. Stone, Computer Aided Design of Experiments, Technometrics, vol.11, pp.137-148, 1969.

G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau, An exact constraint logic programming algorithm for the traveling salesman problem with time windows, Transportation Science, vol.32, issue.1, pp.12-29, 1998.

C. Prud'homme, J. Fages, and X. Lorca, Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, 2016.

P. Toth and D. Vigo, Vehicle routing : problems, methods, and applications, 2014.

M. Fontaine, P. Loudni, and . Boizumault, Exploiting tree decomposition for guiding neighborhoods exploration for VNS. RAIRO OR, vol.47, pp.91-123, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01024210

W. Harvey and M. Ginsberg, Limited discrepancy search, Proc. of IJCAI, pp.607-615, 1995.

B. Hurley, B. O'sullivan, D. Allouche, G. Katsirelos, M. Schiex et al., Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization, Constraints, vol.21, issue.3, pp.413-434, 2016.

D. Koller and N. Friedman, Probabilistic graphical models : principles and techniques, 2009.

S. Loudni and P. Boizumault, Solving constraint optimization problems in anytime contexts, Proc. of IJCAI, pp.251-256, 2003.

M. Luby, D. Sinclair, and . Zuckerman, Optimal speedup of Las Vegas algorithms, Proc. of TCS, pp.128-133, 1993.

P. Meseguer, F. Rossi, and T. Schiex, Soft constraints processing, Handbook of Constraint Programming, 2006.

N. Mladenovi´cmladenovi´c and P. Hansen, Variable Neighborhood Search. Comput, Oper. Res, vol.24, issue.11, pp.1097-1100, 1997.

S. Shimony, Finding MAPs for belief networks is NP-hard, Artificial Intelligence, vol.68, pp.399-410, 1994.

P. Bechon, M. Barbier, C. Grand, S. Lacroix, C. Lesire et al., Integrating planning and execution for a team of heterogeneous robots with time
URL : https://hal.archives-ouvertes.fr/hal-01706146

P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal, Hipop : Hierarchical partial-order planning, Proceedings of the 7th European Starting AI Researcher Symposium (STAIRS'14), 2014.

P. Brucker, A. Drexl, R. Möring, K. Neumann, and E. Pesch, Resource-constrained Project Scheduling : Notation, Classification, Models, and Methods, European Journal of Operational Research, vol.112, issue.1, pp.3-41, 1999.

J. Colomé, P. Colomer, J. Gù-ardia, I. Ribas, J. Campreciós et al., Research on schedulers for astronomical observatories, Observatory Operations : Strategies, Processes, and Systems IV, vol.8448, p.84481, 2012.

F. Dvorak, R. Barták, A. Bit-monnot, F. Ingrand, and M. Ghallab, Planning and acting with temporal and hierarchical decomposition models, 26th IEEE International Conference on Tools with Artificial Intelligence, vol.2014, pp.115-121, 2014.

K. Erol, J. Hendler, and D. S. Nau, HTN planning : Complexity and expressivity, Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI'94), pp.1123-1128, 1994.

S. Girbal, D. G. Pérez, J. Le-rhun, M. Faug`-ere, C. Pagetti et al., A complete toolchain for an interference-free deployment of avionic applications on multi-core systems, 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp.7-9, 2015.

D. Nau, T. C. Au, O. Ilghami, U. Kuter, D. Wu et al., Applications of shop and shop2, IEEE Intelligent Systems, vol.20, issue.2, pp.34-41, 2005.

M. L. Pinedo, Scheduling : Theory, Algorithms, and Systems, Incorporated, 2008.

C. Qi, D. Wang, H. Muñoz-avila, P. Zhao, and H. Wang, Hierarchical task network planning with resources and temporal constraints. Knowledge-Based Systems, vol.133, pp.17-32, 2017.

A. Ayoun and P. Smets, Data association in multi-target detection using the transferable belief model, International Journal of Intelligent Systems, vol.16, issue.10, pp.1167-1182, 2001.

S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex et al., Semiring-based CSPs and valued CSPs : Frameworks, properties and comparison, Constraints, vol.4, pp.199-240, 1999.

A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, The Annals of Mathematical Statistics, vol.38, pp.325-339, 1967.

E. Freuder and R. Wallace, Partial constraint satisfaction, Artificial Intelligence, vol.58, pp.21-70, 1992.

M. Gelain, M. S. Pini, F. Rossi, and K. B. Venable, Dealing with Incomplete Preferences in Soft Constraint Problems, Proceedings of CP 2007, pp.286-300, 2007.

M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and N. Wilson, Interval-valued soft constraint problems, Ann. Math. Artif. Intell, vol.58, issue.3-4, pp.261-298, 2010.

S. Kaci, Working with Preferences : Less Is More
URL : https://hal.archives-ouvertes.fr/lirmm-00681057

W. Pang and S. Goodwin, Constraint directed backtracking. Advanced Topics in AI, vol.1342, pp.47-56, 1997.

J. Lang, L. Van-der, and T. , Preference change triggered by belief change : A principled approach, Lecture Notes in Computer Science, vol.6006, pp.86-111, 2010.

F. Liu, Changing for the better : Preference dynamics and agent diversity, 2008.

M. S. Pini and F. Rossi, Uncertainty in Soft Constraint Problems, Proceedings of CP 2005, vol.3709, p.865, 2005.

G. Shafer, A Mathematical Theory of Evidence, 1976.

F. Smarandache, A. Martin, and C. Osswald, Contradiction measures and specificity degrees of basic belief assignments, International Conference on Information Fusion. Chicago, United States, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00599981

P. Smets and R. Kennes, The Transferable Belief Model, Artifical Intelligence, vol.66, pp.191-234, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01185821

. Références,

J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron et al., Compact-table : efficiently filtering table constraints with reversible sparse bit-sets, Proceedings of CP'16, pp.207-223, 2016.

C. Héì-ene-verhaeghe, Y. Lecoutre, P. Deville, and . Schaus, Extending compact-table to basic smart tables, Proceedings of CP'17, pp.297-307, 2017.

C. Héì-ene-verhaeghe, P. Lecoutre, and . Schaus, Extending compact-table to negative and short tables, Proceedings of AAAI'17, 2017.

C. Barrett, P. Fontaine, and C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, Boosting systematic search by weighting constraints. ECAI'04, pp.146-150, 2004.

E. Clarke, D. Kroening, and F. Lerda, A tool for checking ansi-c programs, Tools and Algorithms for the Construction and Analysis of Systems, pp.168-176, 2004.

C. Héì-ene-collavizza, M. Michel, and . Rueher, Searching critical values for floatingpoint programs, Testing Software and Systems -28th IFIP WG 6.1 International Conference, ICTSS 2016, pp.209-217, 2016.

M. Héì-ene-collavizza, P. Rueher, and . Van-hentenryck, Cpbpv : A constraintprogramming framework for bounded program verification, Constraints, vol.15, issue.2, pp.238-264, 2010.

. Héì-ene-collavizza, L. Nguyen, M. Vinh, S. Rueher, T. Devulder et al., A dynamic constraint-based BMC strategy for generating counterexamples, 26th ACM Symposium On Applied Computing, 2011.

N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-stern et al., Toward a standard benchmark format and suite for floating-point analysis, Numerical Software Verification, pp.63-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01621756

D. Vijay, L. Silva, D. Haller, M. Kroening, and . Tautschnig, Numeric bounds analysis with conflict-driven learning, Tools and Algorithms for the Construction and Analysis of Systems, pp.48-63, 2012.

M. Gagliolo and J. Schmidhuber, Annals of Mathematics and Artificial Intelligence, 2006.

S. Gay, R. Hartert, C. Lecoutre, and P. Schaus, Conflict ordering search for scheduling problems, Principles and Practice of Constraint Programming -21st International Conference, pp.140-148, 2015.

D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Comput. Surv, vol.23, issue.1, pp.5-48, 1991.

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, Support vector machines, IEEE Intelligent Systems and their Applications, vol.13, issue.4, pp.18-28, 1998.

, IEEE standard for binary floating-point arithmetic, ANSI/IEEE Standard, vol.754, 2008.

N. Jussien and O. Lhomme, Dynamic domain splitting for numeric csps, pp.224-228, 1998.

R. Baker and . Kearfott, Some tests of generalized bisection, ACM Trans. Math. Softw, vol.13, issue.3, pp.197-220, 1987.

J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann. Math. Statist, vol.23, issue.3, p.1952

O. Lhomme, Consistency techniques for numeric csps, Proceedings of the 13th International Joint Conference on Artifical Intelligence, vol.1, pp.232-238, 1993.

J. T. Linderoth, W. P. Martin, and . Savelsbergh, A computational study of search strategies for mixed integer programming, INFORMS Journal on Computing, vol.11, issue.2, pp.173-187, 1999.

M. Loth, M. Sebag, Y. Hamadi, and M. Schoenauer, Principles and Practice of Constraint Programming, 2013.

L. Michel and P. Van-hentenryck, Activity-based search for black-box constraint programming solvers, Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems : 9th International Conference, pp.228-243, 2012.

D. Laurent, P. Michel, and . Van-hentenryck, A microkernel architecture for constraint programming, Constraints, vol.22, issue.2, pp.107-151, 2017.

A. Palmieri, J. Régin, and P. Schaus, Parallel strategies selection, Principles and Practice of Constraint Programming -22nd International Conference, pp.388-404, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02133495

P. Refalo, Impact-based search strategies for constraint programming, CP, vol.3258, pp.557-571, 2004.

P. H. Sterbenz, Floating-point computation

, Prentice-Hall series in automatic computation, 1973.

P. Van-hentenryck and L. Michel, The objective-cp optimization system, Principles and Practice of Constraint Programming : 19th International Conference, vol.2013, pp.8-29, 2013.

C. Heytem-zitoun, M. Michel, L. Rueher, and . Michel, Search strategies for floating point constraint systems, Principles and Practice of Constraint Programming -23rd International Conference, pp.707-722, 2017.

D. .. Allouche,

.. .. Aouatef-rouahi,

N. .. Aribi,

G. .. Audemard,

J. .. Behaegel,

B. Salah and .. .. Kais,

B. .. Benhamou, , vol.63, p.73

.. .. Boughaci-dalila,

L. .. Chebouba,

F. .. Chhel,

. Comet and .. .. Jean-paul,

. De-givry and .. .. Simon,

. De-lima and .. .. Tiago,

Y. .. Deville,

J. .. Fages, , p.51

R. .. Garcia,

K. .. Ghedira,

C. .. Guziolowski,

F. .. Jouault,

T. .. Khaled, , vol.63, p.73

J. .. Lagniez, , vol.23, p.83

L. .. Lakhdar,

L. Berre and .. .. Daniel,

L. Calvar and .. .. Théo,

C. .. Lecoutre,

G. .. Lo-bianco,

J. .. Lonlac,

X. .. Lorca,

S. .. Loudni, , vol.13, p.123

E. .. Mephu-nguifo, , p.107

C. .. Michel, , vol.55, p.147

L. .. Michel,

V. .. Montmirail,

. Oger and . .. Baptiste,

A. .. Ouali, , vol.13, p.123

A. .. Pacheco,

M. .. Pelleau, , vol.33, p.55

C. .. Pralet,

C. .. Prud'homme, , p.51

V. .. Ravelomanana, , p.103

S. .. Roussel,

M. .. Rueher, , vol.55, p.147

F. .. Saubion,

P. .. Schaus,

P. .. Siegel,

N. .. Szczepanski,

S. .. Tabary,

B. .. Tisseyre,

C. .. Truchet,

H. .. Verhaeghe,

P. .. Vismara,

L. .. Yahia, , vol.13, p.123

H. .. Zitoun,