J. Chatton, P. J. Magistretti, and L. F. Barros, Sodium signaling and astrocyte energy metabolism, Glia, vol.64, pp.1667-1676, 2016.

G. Madelin, J. Lee, R. R. Regatte, and A. Jerschow, Sodium MRI: methods and applications, Prog. Nucl. Magn. Reson. Spectrosc, vol.79, pp.14-47, 2014.

K. R. Thulborn, Quantitative Sodium MR Imaging: A Review of its Evolving Role in Medicine, 2016.

G. Madelin, R. Kline, R. Walvick, and R. R. Regatte, A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging, Sci. Rep, vol.4, p.4763, 2014.

A. Tsang, Relationship between sodium intensity and perfusion deficits in acute ischemic stroke, J. Magn. Reson. Imaging, vol.33, pp.41-47, 2011.

B. Ridley, Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions, NeuroImage, vol.157, pp.173-183, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657972

R. Ouwerkerk, K. B. Bleich, J. S. Gillen, M. G. Pomper, and P. A. Bottomley, Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging, Radiology, vol.227, pp.529-537, 2003.

A. Maarouf, Topography of brain sodium accumulation in progressive multiple sclerosis, Magma N. Y. N, vol.27, pp.53-62, 2014.

E. A. Mellon, Sodium MR imaging detection of mild Alzheimer disease: preliminary study, AJNR Am. J. Neuroradiol, vol.30, pp.978-984, 2009.

M. Petracca, Brain intra-and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study, Brain J. Neurol, vol.139, pp.795-806, 2016.

K. Reetz, Increased brain tissue sodium concentration in Huntington's Disease -a sodium imaging study at 4 T, NeuroImage, vol.63, pp.517-524, 2012.

W. Zaaraoui, Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study, Radiology, vol.264, pp.859-867, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00826759

P. A. Bottomley, Sodium MRI in Man: Technique and Findings. in eMagRes, 2007.

G. Madelin and R. R. Regatte, Biomedical applications of sodium MRI in vivo, J. Magn. Reson. Imaging JMRI, vol.38, pp.511-529, 2013.

R. Ouwerkerk, . Sodium, and . Mri, Methods Mol. Biol. Clifton NJ, vol.711, pp.175-201, 2011.

R. Stobbe and C. Beaulieu, In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation, Magn. Reson. Med, vol.54, pp.1305-1310, 2005.

R. P. Kline, Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.6, pp.2146-2156, 2000.

A. M. Nagel, The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors, Invest. Radiol, vol.46, pp.539-547, 2011.

F. E. Boada, J. D. Christensen, F. R. Huang-hellinger, T. G. Reese, and K. R. Thulborn, Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation, Magn. Reson. Med, vol.32, pp.219-223, 1994.

N. J. Shah, W. A. Worthoff, and K. Langen, Imaging of sodium in the brain: a brief review, NMR Biomed, vol.29, pp.162-174, 2016.

S. Konstandin and A. M. Nagel, Measurement techniques for magnetic resonance imaging of fast relaxing nuclei, Magma N. Y. N, vol.27, pp.5-19, 2014.

W. H. Perman, D. M. Thomasson, M. A. Bernstein, and P. A. Turski, Multiple short-echo (2.5-ms) quantitation of in vivo sodium T2 relaxation, Magn. Reson. Med, vol.9, pp.153-160, 1989.

W. H. Perman, P. A. Turski, L. W. Houston, G. H. Glover, and C. E. Hayes, Methodology of in vivo human sodium MR imaging at 1.5 T, Radiology, vol.160, pp.811-820, 1986.

S. S. Winkler, D. M. Thomasson, K. Sherwood, and W. H. Perman, Regional T2 and sodium concentration estimates in the normal human brain by sodium-23 MR imaging at 1.5 T, J. Comput. Assist. Tomogr, vol.13, pp.561-566, 1989.

R. Bartha and R. S. Menon, Long component time constant of 23Na T*2 relaxation in healthy human brain, Magn. Reson. Med, vol.52, pp.407-410, 2004.

L. Fleysher, N. Oesingmann, B. Stoeckel, R. I. Grossman, and M. Inglese, Sodium long-component T(2)(*) mapping in human brain at 7 Tesla, Magn. Reson. Med, vol.62, pp.1338-1341, 2009.

S. C. Niesporek, Improved T2* determination in (23)Na, (35)Cl, and (17)O MRI using iterative partial volume correction based on (1)H MRI segmentation, 2017.

Y. Blunck, 3D-multi-echo radial imaging of (23) Na (3D-MERINA) for time-efficient multi-parameter tissue compartment mapping, Magn. Reson. Med, 2017.

, SCiEnTifiC RepoRTS |, vol.8, 2018.

A. M. Nagel, Sodium MRI using a density-adapted 3D radial acquisition technique, Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med, vol.62, pp.1565-1573, 2009.

S. C. Deoni, Quantitative relaxometry of the brain, Top. Magn. Reson. Imaging TMRI, vol.21, pp.101-113, 2010.

O. Kraff, A. Fischer, A. M. Nagel, C. Mönninghoff, and M. E. Ladd, MRI at 7 Tesla and above: demonstrated and potential capabilities, J. Magn. Reson. Imaging JMRI, vol.41, pp.13-33, 2015.

A. M. Nagel, 39) K and (23) Na relaxation times and MRI of rat head at 21.1 T, NMR Biomed, vol.29, pp.759-766, 2016.

Y. Qian, Short-T2 imaging for quantifying concentration of sodium, Magn. Reson. Med, issue.23, 2014.

G. Madelin, J. Babb, D. Xia, and R. R. Regatte, Repeatability of quantitative sodium magnetic resonance imaging for estimating pseudo-intracellular sodium concentration and pseudo-extracellular volume fraction in brain at 3 T, PloS One, vol.10, p.118692, 2015.

L. Fleysher, Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI, NMR Biomed, vol.26, pp.9-19, 2013.

E. Syková and C. Nicholson, Diffusion in brain extracellular space, Physiol. Rev, vol.88, pp.1277-1340, 2008.

M. Inglese, Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla, Brain J. Neurol, vol.133, pp.847-857, 2010.

D. Paling, Sodium accumulation is associated with disability and a progressive course in multiple sclerosis, Brain J. Neurol, vol.136, pp.2305-2317, 2013.

Y. Qian, T. Zhao, H. Zheng, J. Weimer, and F. E. Boada, High-resolution sodium imaging of human brain at 7 T, Magn. Reson. Med, vol.68, pp.227-233, 2012.

P. Eisele, Heterogeneity of acute multiple sclerosis lesions on sodium (23Na) MRI, Mult. Scler. Houndmills Basingstoke Engl, vol.22, pp.1040-1047, 2016.

S. C. Niesporek, Partial volume correction for in vivo 23Na-MRI data of the human brain, NeuroImage, vol.112, pp.353-363, 2015.

L. Koessler, In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes, Hum. Brain Mapp, vol.38, pp.974-986, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01418874

N. Gelman, J. R. Ewing, J. M. Gorell, E. M. Spickler, and E. G. Solomon, Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents, Magn. Reson. Med, vol.45, pp.71-79, 2001.

N. Krebs, Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry, J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. GMS, vol.28, pp.1-7, 2014.

C. Nicholson, P. Kamali-zare, and L. Tao, Brain Extracellular Space as a Diffusion Barrier, Comput. Vis. Sci, vol.14, pp.309-325, 2011.

D. P. Pelvig, H. Pakkenberg, A. K. Stark, and B. Pakkenberg, Neocortical glial cell numbers in human brains, Neurobiol. Aging, vol.29, pp.1754-1762, 2008.

C. S. Von-bartheld, J. Bahney, and S. Herculano-houzel, The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting, J. Comp. Neurol, vol.524, pp.3865-3895, 2016.

B. Mota and S. Herculano-houzel, All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses, Front. Neuroanat, vol.8, p.127, 2014.

S. Herculano-houzel, The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution, Glia, vol.62, pp.1377-1391, 2014.

F. A. Azevedo, Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain, J. Comp. Neurol, vol.513, pp.532-541, 2009.

Y. Assaf and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review, J. Mol. Neurosci. MN, vol.34, pp.51-61, 2008.

J. A. Goodman, C. D. Kroenke, G. L. Bretthorst, J. J. Ackerman, and J. J. Neil, Sodium ion apparent diffusion coefficient in living rat brain, Magn. Reson. Med, vol.53, pp.1040-1045, 2005.

H. Gudbjartsson and S. Patz, The Rician distribution of noisy MRI data, Magn. Reson. Med, vol.34, pp.910-914, 1995.

K. R. Thulborn, D. Davis, H. Adams, T. Gindin, and J. Zhou, Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging, Magn. Reson. Med, vol.41, pp.351-359, 1999.