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Abstract: This paper discusses the problem of delay-dependent stability and stabilization condition for 
discrete-time linear systems. By employing a three-term approximation for delayed state variables, a new 
model transformation is developed, which has a smaller approximation error than the two-term approach. 
By using scaled small gain theorem and an appropriate Lyapunov-Krasovskii functional, new delay-
dependent stability conditions are proposed and formulated as linear matrix inequalities (LMIs).  Before 
the end, a state feedback controller has investigated in the stabilization of discrete linear systems. Finally, 
numerical examples are presented to illustrate the effectiveness of the proposed method. 

Keywords: Discrete time delay; Linear Matrix Inequality (LMI); Scaled Small Gain Theorem; Time-
Delay system. 



                               1. INTRODUCTION 

Time delays are often an integral part of various physical 
systems like air-craft stabilization, communication systems, 
population dynamics, ship stabilization, electric power 
systems with lossless transmission lines and nuclear reactors, 
etc. The nature of these delays is time-varying. It is well 
known that the existence of  time delay in various systems 
may provide poor performance and instability of dynamic 
systems, for more details see (Kim, 2011; Lakshmanan et al., 
2011; Sun et al., 2010; Xu and Lam, 2008) and references 
therein. 

Recently, the discrete time modelling has an essential role in 
many fields of science and engineering. Thus, most of 
systems are implemented with digital computers via the 
necessary input/output hardware. The digital computer uses 
the information in a way discrete. For the aforementioned 
considerations,  much interest has been fixed to the analysis 
of discrete-time delay systems see for example (Chen et al., 
2003; He et al., 2007; Lin et al., 2006; Park, 1999; Xu and 
Lam, 2005). Based on Lyapunov-krasovskii functional and 
on bounding techniques, delay-dependent stability of 
discrete-time systems has been investigated by (Fridman and 
Shaked, 2005;  Gao and Chen, 2007;  Gao et al., 2004;  Jiang 
et al., 2005). On the other hand, many authors have been 
employed the input/output approach in the stability analysis 
of time-delay systems. This method is based on a specific 
transformation which aims to transform a pure system into 
two interconnected subsystems.  

The input/output approach has been implemented in various 
works. Many works have proposed some results such as 
(Huang and Zhou, 2000; Park, 1999) for constant delays, and 

it has been extended to time varying delay in (Fridman and 
Shaked, 2007; Kao and Rantzer, 2007). For time varying 
delay, the idea is to find an approximation of ( ( ))x k d k  for 
discrete-time case or ( ( ))x t h t  for continuous-time  case, 
such that its approximation error is small as possible. 

(Fridman and Shaked, 2007) have  adopted ( )ax k d as the 

approximation of  ( ( ))x k d k  with da = (d1 + d2)/2, and 

1( )x k d is used by (Kao and Lincoln, 2004). (Gu et al., 

2011; Hmamed et al., 2015)  have introduced the two term 

approximation  1 2( () ) 2x t h x t h   as the 

approximation of  ( )x t h t for continuous-time delayed 

case, and (Zhao et al., 2013)  for T-S Fuzzy systems with 
time-varying delay. (Li and Gao, 2011) have also used the 

discrete two term approximation  1 2( () ) 2x t d x t d   as 

the approximation of ( ( ))x k d k for discrete delay systems. 
The same approximation has been considered in (Su et al., 
2012) for filtering T-S fuzzy discrete-time systems with time-
varying delay. It is pointed out that the approximation model 
of the delayed state with two terms is better than that based 
on only one term.  

In this paper, Three terms approximation is proposed by 

using  1 2( ( () ) ) 3ax k d x k d x k d     as an 

approximation of ( ( ))x k d k  with 1d  and 2d   being the 

lower and the upper bounds of delay, within which the 
approximation error is smaller than the two-terms (Li and 
Gao, 2011). Then a new model transformation is formulated 
and will be analyzed and applied for the stability analysis and 
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stabilization of discrete delay systems. By using an 
appropriate Lyapunov-Krasovskii functional and the scaled 
small gain theorem (SSG) we present a new stability criterion 
of a subsystem. Before the end, the conditions which 
guarantee that discrete system is asymptotically stable under 
state feedback controller are given as LMIs by using the cone 
complementarity linearization algorithms. Finally, Numerical 
examples are given to illustrate the effective of the proposed 
method. 

Notations: Notation P > 0(≥0) means that matrix P Is 
positive (semi) definite. The Superscript 'T' means the 
transpose. G1●G2 denotes the series connection of G1 and G2. 
I is an identity matrix with appropriate dimension. Denote 
“*” for the terms that can be deduced by symmetry In block 
matrices, we use diag{...} to express a block- diagonal 

matrix. 
2

2

0

( ) ( )
T

l

k

x x k x k




 denotes the l2 norm of series 

x(k) and ‖ꞏ‖∞ represents the l2-induced norm of a transfer 
function matrix or a general operator. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

We consider the discrete time linear system with an interval 
time delay described by the following model. 

2 2

( 1) ( ) ( ( ))

( ) ( ), , 1,...,0
dx k Ax k A x k d k

x k k k d d
   

     
                          (1) 

Where ( ) nx k   is the state vector, , n n
dA A  are 

constant matrices, 2 2( ), , 1,...,0k k d d      is the 

given initial condition sequence. 

( )d k  is the time delay, time-varying satisfying. 

1 21 ( )d d k d                                                               (2) 

where d1 and d2 are known constants. 

Before proceeding on, the following lemma is introduced 
which plays an important part in the development of our main 
results. 

Lemma 1. (Huang and Feng, 2010) For any symmetric 
matrix 0M  , integer 1 2l l and vector function 

 1 1 2: , 1,..., nl l l    such that the sums concerned are 

well defined, then 

2 2 2

1 1 1

2 1( 1) ( ) ( ) ( ) ( )

T
l l l

T

i l i l i l

l l i M i i M i   
  

   
     

   
      

The main objective of this work is to determine the stability 
condition for time delay system (1) using the Scaled Small 
Gain Theorem (SSG) (Li and Gao, 2011). To apply this 
theorem, we need to transform the original system (1) into the 
two following subsystems:  

  

1 2( ) : ( ) ( ); ( ) : ( ) ( )S z t G t S t z t                      (3) 

Where the forward S1 is a known linear time-invariant (LTI) 
system with operator G mapping ( )t to z(t), and the 

feedback S2 is an unknown linear time-varying one with 

operator  : 1D


    , ( ) zz t   and 

( )t   . From the SSG Theorem in (Li and Gao, 2011), 

we derive sufficient condition for the robust asymptotic 
stability of the interconnected subsystems in (3). For this 
reason, we present the following Lemma. 

Lemma 2. (Li and Gao, 2011) (SSG Theorem) Consider (3), 
and assume S1 is internally stable. The closed-loop system 
formed by S1 and S2 is robustly asymptotically stable for all 

D  if there exist matrices  , zT T T   with 

  1, : , nonsingular, 1z z

z z zT T T T T T T 

  

 



       

such that the following SSG condition holds: 

1 1zT G T 

                                                                  (4) 

                               3. MAIN RESULTS 

In this section, we start with introducing the new model 
transformation method of system (1) and then we present the 
stability condition using SSG Theorem. 

3.1  New Model Transformation 

Inspired by the work in (Li and Gao, 2011), we propose a 

new approximation of the time-varying delay  d k  using its 

lower, upper bounds d1, d2 and its average da. The estimation 
of ( ( ))x k d k  can be written as follows: 

 
1 2

121
3 3( ( )) ( ) ( ) ( ) ( )

a

d
x k d k x k d x k d x k d k          (5) 

Where  
1 2

1
3 ( ) ( ) ( )

a
x k d x k d x k d      designed the 

approximation of ( ( ))x k d k , 12

3 ( )
d

k is the approximation 

error
12 2 1

2 1

2,
a

d d
d d d d


   . From (5) system (1) can be 

written as: 

12

1 1
13 3

1
23 3

3
6

( 1) ( ) ( ) ( )

( ) ( )

( ) ( ) with (k)= ( )

d d a
d

d d

x k Ax k A x k d A x k d

A x k d A k

k z k k


  

      


  
  




  (6) 

Remark 1. The equation 3
6

(k)= ( )k  is introduced to 

show that there is a relation between the feedback S2 and the 
forward S1, and to give a representation of subsystem S1 in a 
compact form, similar to that in (Li and Gao, 2011).  

From (5) and (6) the interconnection formulation of system 
(1) can be written as: 
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12

12

1 3
1

1 3

2

( 1) ( )
( ) :

( ) ( )

( ) : ( ) ( )

d
d

d
d

G

x k kA
S

z k kA

S k z k






      
          


  


   (7) 

With ( ) ( 1) ( )z k x k x k    

1 3 3 3
d d dA A AA     , 

2 3 3 3
d d dA A AA I      

 1 2( ) ( ) ( ) ( ) ( )ak x k x k d x k d x k d      

From the position of ( )d k  we obtain two scripture of  

12

3 ( )
d

k   

Case 1: 1 ( ) ad d k d   

 

 

1 2

1 2

2

1 32

12

1 1( ) 1

( )

( ) ( )( )

1
3 3

1
3

1
1 2 33

( ) ( ( )) ( ) ( ) ( )

( ) 2 ( ) ( )

( ) ( ) ( )

a

a

k d k dk d k

i k d k i k d i k d

k kk

d
k x k d k x k d x k d x k d

z i z i z i

k k k

 



  

    

     

       

  



 
    
 
  

 

  



 
 

Case 2: 
2( )ad d k d   

 

 

1 2

1

2

2 31

12

11 ( ) 1

( )

( ) ( )( )

1
3 3

1
3

1
1 2 33

( ) ( ( )) ( ) ( ) ( )

( ) 2 ( ) ( )

( ) ( ) ( )

a

a

a

k dk d k d k

i k d i k d k i k d

k kk

d
k x k d k x k d x k d x k d

z i z i z i

k k k

 



  

    

     

       

 



 
    
 
  

 

  



 
 

Before moving on, the following Lemma ensuring that the l2-  
induced norm of   is bounded by one. 

Lemma 3. The operator   denotes the mapping z   

and satisfies the condition 1


  . 

Proof. For Case 1, we apply the Cauchy-Schwartz inequality 
(Fridman and Shaked, 2007) 

 
2
12

2 21
1 2 39 9

2 2 21
1 2 39

( ) ( ) ( ) ( )

( ) ( ) ( )

d
k k k k

k k k

   

  

  

  


 

We continue the proof for each term separately. The function 
( ) ( )j p k k d k   is strongly increasing. Hence, the 

inverse 1( ) ( )k p j q j   is well-defined and 

satisfies 12
21( ) ( ) dq j j d   . Then, summing

1( )k in k, 

changing the order of the summation and taking into account 
that ( ) 0, 0z k k  we find that 

12
12

2

1

12

2
12

2

1
2 2

19
0 ( )

1
2

1
0 ( )

2

1 1
0

2

1 2
0

2

4

( ) ( ( ) ) ( )

( ( ( ) ) ( )

( ( ( ) )( ( ) ( )) ( )

( ) ( )

( )

k d
d

l
k j k d k

j d

j k q j

j

d
a

j

d

l

k d k d z j

d q j d z j

d q j d q j j d z j

d d z j

z j


 

  

 

 









 

 

   

 



 

 







 

For 2 ( )k and 3( )k we follow the same process, and we 

have 

2
12

2 2

2
12

2 2

2 2

2 4

2 2

3 4

( ) 4 ( )

( ) ( )

d

l l

d

l l

k z k

k z k








 

Then summing the three Terms together gives 

2 2 2 2 2
12 12 12 12 12

2 2 2

2 2 21
9 9 4 4 4 6( ) ( 4 ) ( ) ( )d d d d d

l l l
k z k z k      

By substituting ( )k by the relation given in equation (6), we 

obtain
2 2

2 2
( ) ( )

l l
k z k  . For case 2, using a proof process 

similar to that for case 1, we obtain the same results. This 
completes the proof. 

Remark 2. The calculation of  l2-gain allows a comparative 
study. (Fridman and Shaked, 2007) have been approximate 

( ( ))x k d k  by one term ( )ax k d . (Li and Gao, 2011) have 

approximated ( ( ))x k d k  by  1 2( () ) 2x k d x k d   for 

two terms approximation. From a purely numerical 
standpoint, the evaluation of l2-gain shows that the l2-gain is 
smaller using three terms based on approximation model than 
obtained using one or two terms based models as will be 
shown in Table 1. 

Table 1.  l2-gain of different approximation. 

Methods l2-gain 

(Fridman and Shaked, 2007) 12
2

d  

(Li and Gao, 2011) 12
2

d  

Three-terms approximation 12
6

d  
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Remark 3. Since the aforementioned considerations, we note 
that the three terms approximation is more general than that 
based on one or two terms. Thus 

If   121
1 22 2( ) ( ) ( ( )d

ax k d x k d x k d k        (5) is 

reduced to 

   121
1 22 2( ( )) ( ) ( ) ( )dx k d k x k d x k d k         

which refers to the two terms approximation (Li and Gao, 
2011) 

If  1 2 12( ) ( ) 2 ( ) ( )ax k d x k d x k d d k       . (5) is 

reduced to 

12

2
( ( )) ( ) ( )d

ax k d k x k d k     

Which refers to the one term approximation (Fridman and 

Shaked, 2007), with 3
3

( ) ( )k k  . 

Remark 4. : Let ( )V k  be a Lyapunov Krasovskii functional 

which guarantees the stability of subsystem S1 and let 

 
0

( ) ( ) ( ) ( )T T

k

J z k Sz k k S k 




  

It is well known that the following condition along (S1) 

 
0

( ) (0) ( ) ( ) 0
k

W V V J j k V k




         (8) 

guarantees that the H  norm of (S1) is less than 1. Therefore 

(8) is a sufficient condition for the bounded real lemma 
problem. In addition if (8) holds, according to Lemma 2 
(SSG Theorem), we can conclude that system (S1) is stable. 
Then, if J < 0, and letting TS T T this means that 

1 1T G T 


   . 

3.2 Stability Analysis 

The forward subsystem S1 has three constant state delays 
So, the condition of the scaled small gain in Lemma 2 can- 
not be implemented to solve S1 directly by bounded real 
lemma. We can use an appropriate Lyapunov-Krasovskii 
functional to obtain sufficient LMIs conditions for a given  

0  ensuring 1T G T 


   . Another possible way is 

applying the lifting method in  (Xia et al., 2007) to convert S1 
to be delay-free. The following theorem presents two LMIs 
methods satisfying the SSG of S1. 

Theorem 1. Given scalars 
2 1 1d d  , and  0  , the 

forward subsystem S1 is asymptotically and satisfies the SSG 
condition in Lemma 2 if one of the following two conditions 
holds: 

i) if there exist matrices P and S such that 

22
3

0

* 0
0

* *

* * *

T

T

P PA PB

P C S

S D S

S



 
 

 
 
 

  

 



  (9) 

Where 

     
2

1 1 1
3 3 31 2 2

0 0 0

0
d d d

d n

A A A A
A

I

 
  
 

  

     1 1 1
3 3 31 2 2

0 0 0n d d dC A I A A A   
  

   
2

2

121
2

2

3
( 1)3 1 2 ( 1)

, , 0 0 , 0 0
0

d

d
dd

d n d n n n
d n n

A
B D A    



 
    
  

 
 

ii) if there exist matrices,  

0, 0, 0 ( 1,2,3), 0( 1,2)i jP S Q i R j     , 
such that 

 
1 2 1 3 1 2 3 2 3

1 2

0
diag , , ,

T T T TP d R d R S

P R R S

        
      

   (10) 

Where 

 
 

11 1 2

1 22
12 2 13 3

0 0

, , ,

R R

diag Q S

 
   

      
 

12 12

11 1 2 3 1 2

12 1 1 13 3 2

2 1 3 23 3

,

,d d
d d

Q Q Q P R R

Q R Q R

A A

      

       

           

  

Proof. To prove (9) we use the scaled small gain theorem and 
the bounded real lemma. Define 

 2( ) ( ), ( 1),..., ( )x k col x k x k x k d  
  (11) 

and using the lifting method in (Xia et al., 2007) to convert S1 
into delay-free of the following augmented state-space 
model: 

( 1) ( )

( ) ( )

x k x kA B

z k kC D 
     

     
    

  
  

  (12) 

The operator G which is a mapping from ( )k  to z(k) 

guarantees the H
 norm of  S1 is less than  .Then, the H

 

norm can be written as 1T G T 


   . According to 

Lemma 3.2 in (Apkarian and Gahinet, 1995) by setting P = 
X and S = L, then the condition (9) guarantees 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     7 
 

     

 
 

1T G T 


    so, it is clear that S1 is asymptotically 

stable and satisfies 1T G T 


   . 

(proof of ii)). Let consider the discrete Lyapunov-Krasovskii 
functional for S1 as 

1 2 3( ( )) ( ( )) ( ( )) ( ( ))V x k V x k V x k V x k     (13) 

Where 

1

2

1

1 1

2 1 2

1

3

2 1 1

3
1

( ( )) ( ) ( )

( ( )) ( ) ( ) ( ) ( )

( ) ( )

( ( )) ( ) ( )

a

l

T

k k
T T

i k d i k d

k
T

i k d

k
T

l l
l j d i k j

V x k x k Px k

V x k x i Q x i x i Q x i

x i Q x i

V x k d z i R z i

 

   



 

 

   



 





 



  

 

And ( ) ( 1) ( )z i x i x i    

The difference of V(k) can be calculated as 

 

 

 

1

2

1 2 3

1 1 1

2

2 3 2

2 2
1 1 2 2

1

1 1

1

2 2

( ( )) ( )

( 1) ( 1)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T

T

T

T
a a

T

T

k
T

i k d

k
T

i k d

V x k x k Q Q Q P

x k Px k

x k d Q x k d

x k d Q x k d

x k d Q x k d

z k d R d R z k

d z i R z i

d z i R z i



 



 

    

  

  

  

  

 









  (14) 

Applying Lemma 1 to deal with the cross-product items in 
(14), we obtain 

1

1

1 1 1 1 1( ) ( ) ( )
k

T T

i k d

d z i R z i k R 


 

     (15) 

2

1

2 2 2 2 2( ) ( ) ( )
k

T T

i k d

d z i R z i k R 


 

     (16) 

With 

1 1 2 2( ) ( ) ( ), ( ) ( ) ( )k x k x k d k x k x k d       .  

Substituting the cross-product items in (14) by (15) and (16), 
we obtain 

  2 2

1 1 1 2 1 1 2 2 2
( ( )) ( ) ( )T T TV x k k P d R d R k          

                                                                                (17) 

Where  

 
 

11 1 2
1

12 2 13

0

* , ,

R R

diag Q

 
      

 

Using Schur complement, (10) implies that ( ( )) 0V x k  , 

which means that S1 is asymptotically stable. 

Let S > 0 

 

 

0
( )

22
3

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

k
j k

T T

k

J z k Sz k k S k

z k Sz k k S k

 

  











 










  (18) 

Taking ( ( ))V x k of S1, we have under the zero initial 

condition 

 

 
 

0

2 2
1 2 2 3 1 1 2 2

0

3

( ) (0)

( ) ( )

( )

( )

k

T T T

k

J V V J

j k V k

k P d R d R

S k













   

  

     

 




   (19) 

Where ( ) ( ) ( )T T Tk k k      .  

By using the Shur Complement, (19) implies (10). If letting 
TS T T , 0J  means that 1T G T 


   . This 

completes the proof. 

Remark 5. : It has been observed that using 1 2
2

d d
ad  in 

the constructed Lyapunov function can improve stability 
performance for many examples. Also it is seen from the 
approximation error that introducing ( )ax k d plays an 

important role to obtain an approximation error smaller than 
the existing ones. 

Remark 6. : The number of decision variable in Theorem 1 

has been reduced to 27 7
2 2n n , which is smaller than 

29 3n n  in (Zhang et al., 2008; Ramakrishnan and Ray, 

2013). 2 911
2 2n n  in (Kwon et al., 2013), 24 3n n  in (Liu 

,and Zhang, 2012), 28 3n n in (Shao and Han, 2011) which 
means that the condition proposed is simple than the other 
conditions in literature.  
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3.3 Controller Design 

This section is devoted to studying the state feedback 
controller design problem, whose goal is to guarantee the 
stability asymptotic of discrete-time delay system. The 
discrete-system controlled is represented as 

( 1) ( ) ( )x k Ax k Bu k                         (20) 

It should be noted that in the literature several author have 
been studying the stabilization of the system (20) and have 
chosen as control law ( ) ( ( ))u k Kx k d k  . In this section we 

are trying to stabilize our system with a control law Different 
than that used in (Gao and Chen, 2007; Kwon et al., 2013; 
Zhang et al., 2008). The state feedback controller is described 
by the following equation: 

1 2( ) ( ) ( ( ))u k K x k K x k d k                                   (21) 

where K1, K2 are the controller gain to be determined and 
d(k) is a time varying delay satisfying (2). Applying the 
controller law (21) to system (20) and using (5), the closed-
loop system is obtained from (20) as 


 12

1
1 13

1

2 3

( 1) ( ) ( ) ( )
( ) :

( ) ( ) ( )

d

d
a d

x k A BK x k A x k d
S

x k d x k d A k

    


    



 

Where 2dA BK . 

The following Theorem presents the conditions should be 

satisfied 1( )S to be asymptotically stable. 

Theorem 2. Given scalars 2 1 1d d  , the closed loop 

System 1( )S is asymptotically stable if there exist matrices 

0, 0, 0, 0, 0( 1,2,3)iP S X Z Q i     

10, 0( 1, 2),j jR Y j K   and 
2K such that 

 
1 2 1 3 2 3 3

1 2

0
, , ,

T T T Td d

diag X Y Y Z

        
      

   
   (22) 

With equality constraints  

1 1 2 2, ,PX I R Y I R Y I SZ I     

Where 

12 12

2 1 3 23 3

1 1 1
1 1 3 3 3

1 1 1
2 1 3 3 3

, .

.

d d
d d

d d d

d d d

A A

A BK A A A

A BK I A A A

           
    
     

   





 

Proof. replace
1 2, , ,X Z Y Y by 1 1 1 1

1 2, , ,P S R R    ,respectively. 

By taking in consideration that 
1A A BK  ,

2dA BK . Then 

we apply the Schur Complement lemma, we get the proposed 
conditions in Theorem 1. Therefore, by Theorem 1 the 

desired result immediately follows. This completes the proof. 

Remark 7. The resolution of the LMI in Theorem 1 using 
MATLAB toolbox is difficult then to put in evidence the 
problem, we need to transform it into minimization problem, 
such as LMIs are satisfied. By following the same procedure 
as that presented in (Zhang et al., 2007) then the resolution of 
our problem is easy to manipulate using the algorithm of 
cone complementarity linearization (CCL) algorithms 
(Ghaoui et al., 1997), which is adopted as Algorithm 1. 

Algorithm 1. To maximize d2: 

Step 1: Choose a sufficiently small initial 2 1 1d d  and a 

tolerance   (for example 610  ). Set 

   0 0 10 10 20 20 0 0, , , , , , ,P X R Y R Y S Z I  such that exists a 

feasible solution for the condition (22) and 

1 2

1 2

0, 0, 0, 0
R I R IP I S I

I Y I YI X I Z
   

      
            

  (23) 

Set 
2max 2d d ; 0k  . 

Step 2: Find a feasible solution of the following optimization 
problem for the variables  1 1 2 2, , , , , , ,P X R Y R Y S Z  

1 1 1 1

2 2 2 2

Minimize Trace

subject to (22) and (23)

k k k k

k k k k

P X X P R Y Y R

R Y Y R S Z Z S







  
      

Set  

1 1 1( 1) 1 1( 1) 1

2( 1) 2 2( 1) 2 1 1

, , ,

, , ,

k k k k

k k k k

P P X X R R Y Y

R R Y Y S S Z Z

   

   

   

   
 

Step 3: if  

1 ( 1 )

2 ( 1 ) 1

1 1

1 1 1( 1)

1 1

2( 1) 1

,

,

k

k k

k k k

k k

P X R Y

R Y S Z

 

 



 

 

  

 

 

   

   
 

are satisfied, then set d2max = d2, increase d2, and return to 
Step 2. If it is not satisfied within a specified maximum 
number of iterations, then exit. Otherwise, set k = k + 1 and 
go to Step 2. 

Table 2.  The minimum    for different methods for. 

8 ( ) 14d k   
Methods Num. of  Var 

Lemma 3 for Sh1 (Li and Gao, 2011) 174 1.00 
Lemma 3 for Shm(Li and Gao, 2011) 303 0.79 
Corollary 1-(ii) (Li and Gao, 2011) 18 0.53 
Corollary 1-(i) (Li and Gao, 2011) 468 0.49 
Theorem 1-(ii) 21 0.44 
Theorem 1-(i) 468 0.42 
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Fig. 1. SSG condition according to d1 when d2=8 for example 
2. 

 

Fig. 2. SSG condition according to d2 when d1=7 for example 
1. 

 

 

Fig. 3. Closed-loop system x1(k) and x2(k) for K1=K2. 

 

Fig. 4. The states trajectory x1(k) and x2(k) for 
1 2

K K . 

4. NUMERICAL EXAMPLES 

To illustrate the effectiveness of the proposed method, this 
section will provide three examples. It will be shown that the 
proposed results can provide less conservative results than 
recent ones proposed in literature. 

Example 1. Consider the linear discrete-time delay systems 

0.8 0 0.1 0
( 1) ( ) ( ( ))

0.05 0.9 0.2 0.1
x k x k x k d k


   

 

   
      

  (24) 

In order to test the advantages of the model transformation. 
(Li and Gao, 2011) is adopted the model transformation 
presented in other paper such as (Fridman and Shaked, 2007; 
Kao and Lincoln, 2004), and formulate its specific Lemmas. 
We compare our approach using Theorem 1 with results in 
(Li and Gao, 2011), and the results obtained by lemmas 
presented in (Li and Gao, 2011). Table 2 lists the Number of 
decision variable of different methods for 8 ( ) 14d k  , and 

the minimum of  . One can see that the minimum    

obtained by our method is smaller than that given by other 
methods. From Table 2 we can see that Theorem 1 ii) need 
more decision variable and gives smaller than Corollary ii) 

in (Li and Gao, 2011) while that of Theorem 1 i) and with the 
same number of decision variables we obtains a smaller    

than Corollary i) in (Li and Gao, 2011) which means that the 
three term approximation gives less conservative results than 
two-term approximation. 

For an appropriate choice of ,A B  and C , Table 3 lists the 

upper delay bounds obtained by Theorem 1-i) and ii).  

From Table 3, we can conclude that the proposed method 
yields less conservative results than the existing results in the 
literatures. Moreover, the relationship of SSG condition 

1

X G X



  according to d2 when d1 = 7 is figured in Figs.2. 

From Figs. 2, we observe that the three-term approximation 

has smaller SSG condition 1

X G X



  than other 

approximation based model existing in the literature. For 
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example when d1 = 7 the condition 1

X G X



  obtained by 

Theorem 1-i) and ii) are 0.6318 for d2 = 18 and 0.877 for d2 = 
21 respectively, while that of two-term approximation in (Li 
and Gao, 2011) by Corollary 1-i) and ii) are 0.9486 and 
0.8857 respectively. In other side, we can observe from Fig 2 
that Theorem 1-i) gives larger delay bounds d2= 26 than that 
obtained by Corollary 1-i) in (Li and Gao, 2011) d2 = 21. This 
comparison shows that the proposed method is less 
conservative delay range. 

Table 3. Maximum bounds d2 for different value of d1. 

d1 2 4 6 7 10 15 20 25 

(Shao and Han,2011) - - 18 18 20 23 27 31 

(Liu and Zhang, 2012) - - 18 18 20 23 27 31 

(Kwon et al., 2013) 19 19 20 20 21 24 27 - 

(Li and Gao, 2011)-(ii) 17 17 18 18 20 23 27 31 

(Zhanga et al., 2015) 20 21 21 - 22 24 27 - 

Theorem 1-(ii) 20 20 21 21 22 25 28 32 

(Li and Gao, 2011)-(i) 17 19 201 22 25 30 35 40

Theorem 1-(i) 20 22 24 25 28 33 38 43

Example 2. Consider the linear discrete-delay systems 

0.7 0.1 0.1 0.1
( 1) ( ) ( ( ))

0.05 0.7 0.1 0.2
x k x k x k d k


   

 

   
      

          (25) 

For given d1={2,5,6, 7,10, 20} the maximum upper bounds d2 
obtained by (Ramakrishnan and Ray, 2013) are 
{9,11,12,13,16,26}, while that of Theorem 1-(ii) gives larger 
delay bounds d2={12,15,16,17,20,30}, which means that the 
proposed method is less conservative. Table 4 shows more 
results of the maximum bounds delay for different values of 
d1.  

Table 4. Maximum bounds d2 for different value of d1. 

d1 2 5 6 7 10 20 N.V 

(Zhang et al., 2008) 7 9 10 11 14 24 42 

(Huang and Feng, 2010) 8 10 11 12 15 25 18 

(Liu and Zhang, 2012) 9 11 12 13 16 26 22 

(Li and Gao, 2011)-(ii) 9 11 12 13 16 26 18 

(Li and Gao, 2011)-(i) 9 13 14 15 17 27 - 

Theorem 1-(ii) 10 13 14 15 18 28 21 

Theorem 1-(i) 12 15 16 17 20 30 - 

It is clear that the results obtained in this paper are better than 
the existing one in the literatures. From the last column of 
Table 4 (N.V), we observe that the proposed method needs 
more decision variables than (Huang and Feng, 2010) and (Li 
and Gao, 2011)-(ii) and smaller variables than other methods

which means that the proposed method still effective and 
gives less conservative results. In other hand, Fig.1 describes 

the relationship of SSG condition 1

X G X



  according to 

d1 when d2=8. From Fig.1 we can be seen that the SSG 
condition obtained by our approach still smaller than other 
approximation based model used by other authors. This 
means that the proposed method is effective and less 
conservative.  

Example 3. Consider the model of inverted pendulum system 
(Kwon et al., 2013), shown in Fig 5 with the following 
continuous description 

3( ) 3
(4 ) (4 )

0 1 0
( ) ( )

0M m g
l M m l M m

x t u t
 

   
    
   

   (26) 

When M = 8kg, m = 2.0kg, l = 0.5m, g = 9.8m/s2 and 
choosing sampling time Ts = 30ms, then system (26) can be 
transformed to discrete-time system with the following 
parameters 

1.00078 0.0301 0.0001
,

0.5202 1.0078 0.0005
A B

   
       

 

 

Fig. 5. Inverted pendulum system. 
We consider this example to illustrate the advantages of the 
proposed method. When d1=1 and by applying Theorem 2 
The maximum value of d2 which guarantees the asymptotic 
stability of closed-loop system (20) is d2=8 for (K = K1 = K2) 
and d2 > 15 for 

1 2
K K  while that of (Gao and Chen, 2007,  

Kwon et al., 2013; Zhang et al., 2008; Huang and Feng, 
2010) are 3,4,5,6 respectively. This means that our approach 
gives larger delay bounds.  

Table 5 summaries study devoted to stabilization of system 
(20) and lists the maximum delay bounds and the controller 
gain obtained by other methods. The last column in Table 5 
lists the number of iteration (N.Iter) satisfied Theorem 2 to be 
feasible.  
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Table 5. Maximum bounds d2 and controller gains K. 

Methods d2                       K N.Iter 

(Gao and Chen, 2007) 3 [102.9100         80.7916] - 

(Zhang et al., 2008) 4 [110.6827         34.6980] - 

(Huang and Feng, 2010) 5 [110.6827         34.6980] - 

(Kwon et al., 2013) 6 [110.6827          34.6980] - 

Theorem 2 K1 = K2 8 [85.9857            26.5128] 473 

Theorem 2    
1

2

K

K

 
  

 >15 
98.3007 7.0841

0.0005 0.0020

 
  

 59 

Firstly, it should be noted that Theorem 2 is satisfied with a 
small controller gain than those in (Gao and Chen, 2007; 
Zhang et al., 2008; Huang and Feng, 2010, Kwon et al., 
2013). Moreover, the number of iteration needed to obtain 
feasible solution for K = K1 = K2 is 473, while that of 

1 2
K K  is 59, which means that the proposed method with 

1 2
K K is better than (K = K1 = K2). The controller gains in 

last line of Table 5 are obtained for given d1 = 1 and d2 = 15. 
Fig 3 and Fig 4 plots the closed loop system using the 
controller gain (K = K1 = K2) and 

1 2
K K respectively. Fig 3 

shows that the state responses converge to zero for small time 
k, while that of Fig 4 needs more time k to approach zero. 
From this example we conclude that our method can control 
practical system with a smaller controller gain better than the 
existing methods in literature. Fig 3 and Fig 4 emphasize the 
merit of the proposed method.  In the simulation, the initial 
values of the states are x(0) = [1;1]  and time-delay d(k) is 

assumed as  ( ) 1 7 sin( / 2) 1 8d k k    

                            5.  CONCLUSION 

In this paper, an improved delay-dependent stability for 
discrete-time linear systems has been developed. Based on a 
new model transformation performing a three-term 
approximation,  stability criteria have been presented in term 
of a set of LMIs by using a direct Lyapunov-Krasovskii 
functional and SSG theorem. Thereafter, the problem of time-
delayed controller design for discrete-time systems has been 
studied and a sufficient condition for the solvability of this 
problem has been given by using cone complementarity 
linearization (CCL) algorithms. It is better to mention that 
these results are extendable for filtering problem and for 
many types of systems. At the end, the proposed numerical 
examples have demonstrated the advantage of the method 
proposed to obtain less conservative results. 
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