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I. INTRODUCTION

Converging shock waves are involved in several fieds of high energy physics such as astrophysics and inertial
confinement fusion (ICF). As their strength increases with time, these focusing shock waves can efficiently heat and
compress matter. In the wake of these shock waves, the matter implodes and further compresses. However, the
efficiency of this compression can be tempered if the symmetry of the flow is broken. The Richtmyer-Meshkov (RM)
hydrodynamics instabilities [1, 2] can disrupt this symmetry. It is induced by the passage of a shock wave through
a density gradient. For example, in ICF experiments, such gradient occurs at the interface between the deuterium-
tritium (DT) core, and the encapsulating spherical plastic shell. A specific sequence of converging shock waves is
launched to compress the DT fuel. If defects are present at the DT/plastic interface, the RM instability will be
triggered. The amplitude of the defect increases, and it could lead to a mixing between the core and the plastic. A
mixing zone within the DT fuel would damp the nuclear reactions within the core. The control of the RM instabilities
is crucial to ICF success, and reliable models which predict the growth of the RM instabilities in convergent geometries
are needed.

In the past few decades, the RM instability was often studied in planar geometry. Numerous models have been
derived in the planar geometry to describe the linear and the nonlinear regimes of the instability for compressible
and incompressible flows. Their reliability have been assessed by comparison with lots of experiments which were
often performed in planar shock tubes. In convergent geometry, the growth of the RM instability can be enhanced.
In order to test the corresponding theories and numerical simulations, experimental results with controlled initial
conditions are needed. Such experiments with perfect gases are scarce [3]. A few more data are available with
laser experiments [4-7]. These experiments are extremely elaborated [8, 9] and required heavy facilities [10-12].
Furthermore, high energy physics must be taken into account in order to explain the experimental data [13]. Some
models have been derived to study the RM instability in convergent geometry for the canonical problem of a single
mode sinusoidal perturbation between two perfect gases [16, 17, 19, 20]. They do not take into account neither
plasma, radiation, thermal transport or ablation physics. Nonetheless, they are an essential step in order to assess
the distinction between the incompressible convergence [14, 15], the acceleration or deceleration of the interface which
leads to the Rayleigh-Taylor (RT) instability [21, 22], and the compressibility. Furthermore, nonlinear theories are
also needed [23], and must be tested in the case of a convergent geometry. In the following, we present the results
of experiments about the canonical cylindrical RM instability which starts from the linear regime to the reach the
nonlinear stage.

Since 2014 [24, 25], we have built a new shock tube facility which generates cylindrical RM instabilities. We study
this instability at the interface between perfect gases (SFg and air) which are seperated by a single-mode sinusoidal
interface. This shock tube is obtained from a conventional planar shock tube by using the gas lens technique [26].
This technique turns a planar shock wave into a convergent one through the impedance mismatch at a first shaped
interface. The resulting shock wave is then guided toward a second interface where the RM instability is studied.
The interfaces between gases are materialized by thin nitrocellulosic membranes which are held on shaped stereo-
lithographed grids. In the following, we present and analyze the experimental results which are obtained with such a
facility.

The paper is organized as follows. In Sec. II, we present the experimental set-up. In Sec. III, the 1D flows
are discussed. This leads us to specify the actual composition of the involved gases. In Sec IV, we compare the
experimental and numerical shapes of the interface where the RM instability takes place. We explain how the imprint
due to the grid bars on the initial shape of the interface must be taken into account. The different features of the
experimental data are specified. In Sec. V, we focus on the growth of the instability. Experimental and numerical
peak-to-valley amplitudes are compared. A good agreement is obtained. A theoretical analysis of these cylindrical
RM instabilities is also presented. We show that the interface is not purely coasting after the shock passage, and it
undergoes a slight deceleration before being shocked again (re-shock). As a consequence, the interface is subject to a



Rayleigh-Taylor instability which initial conditions are determined by the Richtmyer-Meshkov instability. Finally, we
will demonstrate that the growth of the instability does not saturate in the nonlinear regime as it would have in the
planar case.

II. EXPERIMENTAL SET-UP

The experimental part of this investigation was carried out using a conventional shock tube in horizontal orientation,
which has a total length of 3.75 m and a square inner cross section of 80 mm by 80 mm [27]. At the shock tube
end-wall, a specific wedge test section was designed, manufactured and installed. It has a half apex angle, 6y, of 15
degrees, and accommodates a three-fluid three-zone system: a test cell of a heavy gas (SFg) enclosed by light gas
(air) on each side as shown in Fig.1. The shock tube is initially at the atmospheric pressure. The initial expected
densities are pg;r = 1.204 kg/m?’, and pspe = 6.073 kg/m3. The corresponding adiabatic exponents are 74, = 1.4,
and yspe = 1.09. The first air/SFg interface forms the gas lens which converts a planar shock wave into a cylindrical
one. The same configuration (air/SF¢ fast-slow case) successfully validated in a previous work [24] has been kept: the
incident planar shock wave propagates with a Mach number of 1.15 in air, and refracts through an elliptic interface
which polar equation writes as:

1-e
T3y (1)
1 —e cos(0)
where e = Wy /W, represents the ratio of the transmitted and incident shock wave velocities, and r(0) =0.159 m is the
location of the interface from the apex. The materialization of the gas lens interface was obtained by a 0.5-pm-thick

double layer of nitrocellulose membranes combined with a grid. This grid is obtained by stereo-lithography [REFS].
The second interface (SFg/air), located at 100 mm from the apex, presents a single mode perturbation with the

following polar equation:
210
r(0) = 0.1 —0.0015 (1 — cos <9i>) (2)
0

r(0) = r(0)

with 6y = arctan (0'—04). This second interface is materialized as the first one. The first and second interfaces are hold

0.15

by a 8x9.5 mm? mesh elliptic grid, and 9.5x9.5 mm? mesh sinusoidal grid, respectively. For recording the evolving
flow pattern in the convergent test section, a Z-type Schlieren system is coupled with a Photron Fastcam SA1 high
speed digital camera. In addition to the optical diagnostic, pressure transducers recorded pressure histories during
each experiment : four of them are located in the corner of the experimental chamber as shown in Fig.1. In the
following, we will discuss results obtained from the Schlieren pictures (Fig. 2). The shock wave moves from left to
right, and propagates through the air/SFg/air three zones. At ¢t = —10 us, the planar shock wave is clearly visible
on the left side in the vicinity of the gas lens. When the incident shock wave collides with the air/SFg interface,
it bifurcates into a transmitted converging cylindrical shock wave which moves in the central zone from ¢ = 65 us
to t = 365 ps. At t = 365 ps, the converging shock wave impacts the sinusoidally perturbed SF¢/air interface, and
the subsequent pictures (from ¢ = 440 us to t = 815 us) show the different stages of the converging RM instability.
As the shock wave hits the interfaces, the nitrocellulose membranes are broken into small pieces. These remnants
stay in the vicinity of the interfaces, and are seen as a foamy opaque zone in the Schlieren pictures. At the second
interface, the converging shock refracts from the heavy fluid (SFg) to the light one (air). Thus, a phase inversion of
the perturbation at the interface occurs. We can also note the geometrical distortion of the shock during its refraction
at t = 440 ps. It later stabilizes and recovers its cylindrical shape. The horizontal waves behind the moving interface
are the consequence of the support grid. Reaching the apex approximatively at ¢ = 590 us, the converging shock wave
is reflected back, and expands through the evolving SFg/air interface at ¢t = 815 us.

III. MONODIMENSIONAL FLOW

In the following, superscripts (") and (?) refer to interfaces 1 (the gas lens) and 2 (location of the RM instability),
respectively. When waves are considered, subscripts , and ; mean “reflected” and “transmitted”. When the geometry
is considered, the symbols r and ¢ stand for the distance from the apex of the shock tube, and the time, respectively.
The origin of times corresponds to the moment when the planar shock wave hits the interface 1.



FIG. 1: Scheme of the experimental device adapted on the conventional shock tube, and locations of the pressure gauges.

A. Wave velocities

In this section, we present the theoretical, and expected wave diagram for our experiments.
Let us recall that the gas lens consists in an air/SF¢ interface. Its purpose is to morph the planar incident shock wave

into a cylindrical transmitted one. The Mach number of the incident shock wave, Mi(l), is equal to 1.15 in air. The

theoretical initial velocity of the transmitted shock wave in SFg is equal to Wt(l) = 165.5 m/s (Mt(l) = 1.226). The
cylindrical shock wave is plainly formed at » = 0.1552 m. In order to predict the trajectory, and the strengthening of
the imploding shock wave, the Whitham’s approximate geometrical theory [28] is used. This theory gives the Eq. (3)
between the Mach number of the converging shock wave, M, and its area, A:

M dM dA

where A(M) = (1 + %1—;’&) (14 2p+ 555), with p? = % As A is a known function of r, M(r) or M (t)

can be computed from Eq. (3). The second interface is located at = 0.1 m. The Eq. (3) gives a theoretical velocity
for the shock wave before its impact on the second interface equal to Wt(l)(r =0.1)=171m/s (Mt(l) = 1.268). As the
velocity of the shock wave in SFg goes from 165.5 m/s to 171 m/s between interfaces 1 and 2, its acceleration is barely
noticeable. Once this shock wave reaches the second interface, a shock wave is transmitted in air, and a rarefaction
wave is reflected in SFg. The velocity of the transmitted shock wave is initially equal to Wt(Q) (r =0.1) = 396 m/s

(Mt(Q) = 1.154). The head of the rarefaction wave travels back at a velocity equal to W (r=20.1) = —75.86 m/s.

B. Analysis of the experimental (r,t) diagrams

In this section, we explain the discrepancies between the expected wave diagram, and the actual experimental
results.
The experimental data are obtained from two shots which are labeled #961 and #962. The initial conditions of
these shots (Mach number and gaz composition) were planned to be identical. As far as the shock transit in SFg
is concerned, the two shots give redundant data. The velocity is quasi-constant, and is equal to 168.8 m/s and
166.7 m/s for shots #961 and #962, respectively (Figs. 3-a and b). These values agree with the theoretical velocity
which starts from 165.5 m/s at the interface 1 to reach 171 m/s at the interface 2.
A clear disagreement between experiments and theory occurs about the reflected wave at the second interface. The
experimental measurements show a reflected shock wave which velocity is equal to —90.6 m/s and —88 m/s for
shots #961 and #962, respectively. Yet the theory predicts a rarefaction wave. This discrepancy is explained by
the grid bars. They generate the reflected shock wave (see Appendix A). The trajectory of this shock wave can be
theoretically estimated. It is in reasonable agreement with the experimental data: at t = 0.6 ms, its radius is 122 mm



FIG. 2: Sequence of schlieren pictures (from run #961) showing the evolution of the converging Richtmyer-Meshkov instability
at the SFg/air interface materialized by 2 layers of 0.5-um-thick nitrocellulose membrane recovered in sandwich on a grid
support (9.5x9.5 mm?).

in the experiment, and the theory predicts 119 mm.

We now focus on the transmitted shock wave in the apex section. The shock wave velocity, Wt(2), and the travel
time of the shock wave between interface 2 and the apex, At ocus, for the two experimental cases are compared with
the theoretical values in Table I. For the shot #961, the relative discrepancies between experimental and theoretical
data are within the error bar of the experiments. Therefore, we will consider that the gases are pure for shot #961.
For the shot #962, the velocity of the transmitted shock wave is slower than expected. The relative discrepancy
with respect to the theoretical velocity is about 16%. In order to explain this value, two reasons can be put forward.
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FIG. 3: One-dimensional wave-diagrams (r-t plane) reconstructed from pressure measurements, and Schlieren pictures. a- shot
#961, b- shot #962.

TABLE I: Velocity, Wt@)7 of the transmitted shock wave at the interface 2, and time lapse, Atfocus, between the shock passage
at the interface 2, and the focusing at the apex.

Shot #961 Shot #962  Theory Theory
(pure gases) (polluted air)
w? (m/s)  390.9 333.8 396.1 334.
Atfocus (ms)  0.238 0.280 0.234 0.277

Firstly, the membrane which is initially held by the grid, and which separates the SFg from air, could absorb a part
of the incident shock wave energy. However, if the membrane at the second interface had any influence on the flow,
it would have been seen on the shot #961, and at the interface 1. Therefore, we dismiss this hypothesis. Secondly,
the air in the apex section of the shock tube could be polluted by SFg. The resulting mixture would be heavier than
air, and the transmitted shock wave slower than expected. A 8.8% at. SFg polluted air would give the correct value
for Wt(Q) and At focys. For the shot #962, we will now consider that the gas in the apex section of the shock tube is
a SFg-air mix. The initial density of this gas is p9,,, = 1.633 kg/m?, its adiabatic coefficient is yasi, = 1.307, and
the initial sound speed is cpzi, = 284.78 m/s.

The post-shock Atwood numbers are AtT = —0.687, and At™ = —0.594 for shots #961, and #962, respectively. As far
as the RM instability is concerned, the Atwood number at interface 2 is defined as At = (pair — psre)/(Pair + PsFe)-
Should the Rayleigh-Taylor instability be concerned, the Atwood number would be the magnitude of the previous
definition.

Figures 4 and 5 present the theoretical, and experimental wave (r,t) diagrams for the two shots.

In order to further assess our previous conclusions about the composition of the gases, numerical simulations have
been performed with the multimaterial Arbitrary Lagrangian Eulerian (ALE) package of the Hesione code [29, 30].
The subsequent wave trajectories are also presented in Figs. 4 and 5. They match the experiments. A further result
which is deduced from thes good agreements is that the membranes have no influence on the wave dynamics.

IV. SHAPE OF THE PERTURBATION AT THE SECOND INTERFACE
A. Grid imprint

In this section, we focus on the shape of the distorted interface. Pure air and SFg gases are considered unless
otherwise specified. The bars on the gas lens (interface 1) are not considered since they do not influence the circular
converging shock wave in SFg.

As seen on the experimental pictures of Fig. 2, the shape of the perturbed interface develops a sawtooth shape. This
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FIG. 4: (r,t) diagram for shot #961. Symbols represent experimental data. Full and dashed lines are from simulation and
theoretical results, respectively.
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FIG. 5: (r,t) diagram for shot #962. Symbols represent experimental data. Full and dashed lines are from simulation and
theoretical results, respectively.

is not what is expected from the growth of a single mode sinusoidal initial perturbation. The grid bars are to be taken
into account to explain this peculiar shape of the interface. This inference is established with numerical simulations.
In order to compute the grid bars (motionless areas), the pure Eulerian package of the Hesione must be used. This
package requires a cartesian mesh, which implies that the tilted walls of the convergent shock tube are modeled as
staircases. This artificial roughness of the walls generates a numerical boundary layer. However, if the mesh is fine
enough, the effect of this boundary layer is negligible: the tip of the jet is slightly modified, but its amplitude remains
unaffected. This can be seen in Fig. 6 (upper part) which presents an Eulerian computation of the shock tube without
grid.

In order to see if the grid bars modify the growth of the perturbation at the interface 2, eulerian simulations with
these bars have been performed (bottom part of Fig. 6). The cell sizes of the mesh are Az = Ay = 1.25 10~* m. This
corresponds to 205 points per perturbation wavelength (ppw). Only half of the shock tube is considered here.

Without any bar, the interface displays the common features of a single mode sinusoidal RM instability in the
nonlinear regime, i.e. a rounded bubble, and a long jet with a mushroom cap. When the grid is taken into account,
the shape of the interface becomes sawtooth like. Furthermore, additional small jets are generated at the peak and
the valley of the interface. There are the consequence of trailing small scale perturbations growing in the wake of the
bars. Afterwards, due to the RM instability, these trailing dents on the interface reverse, and turn into small extra
jets.

The numerical convergence of the Hesione code has been studied through a zoning study. A new grid resolution
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FIG. 6: Numerical simulations. Interface shapes shortly before the re-shock of interface 2. Top: without the grid bars. Bottom:
with the grid bars.

has been considered: Az = Ay = 8.33 10~°> m (307 ppw). Furthermore, the full width of the shock tube has been
computed in order to suppress any imposed symmetry on the z-axis. As shown in Fig. 7, the 205 and 307 ppw
interfaces superimpose, with the exception of the aditional small jets which are slightly different.

FIG. 7: Numerical simulations. Interface shapes shortly before the interface 2 re-shock time. Black, blue, orange, and green
shapes are results from numerical simulation with 205, 206, 307 ppw, and 205 ppw with a Ay = +0.3 mm shifted interface,
respectively.

In order to check the sensitivity of the flow symmetry to the parity of the number of points, we run a 206 ppw
simulation. The results are the same as those obtained from the 205 ppw computation. As a result, we consider that
the 205 ppw resolution is fine enough to describe correctly our shock tube. Let us note that the symmetry of the
flow with respect to the z-axis remains in these simulations which compute the whole tube. In experiments, it could
happen that the stereo-lithographed grid is slightly out of alignement with respect to the plan of symmetry. In order
to illustrate the sensitivity to such a shifting, we have run a simulation with a Ay = 40.3 mm shifted interface. This
shifting does not change the general shape of the interface. However, the additional small jets are modified, and the



one near the z-axis now grows downwards (Fig. 7). This result shows that the directions, and the amplitudes of the
small scale features of the interface are highly sensitive to any offset of the grid.

B. Analysis of the experimental pictures

The Schlieren technique reveals the density gradients in the flow. Our intention is to track the interface through

this means. However, the experimental pictures display a lot of features in addition to the interface signal. In this
section, by comparing experimental results with numerical simulations, we detail the different causes for the Schlieren
signals, and identify the actual location of the interface.
For the following numerical results, we consider that the initial position of the interface is ideal (no offset). Figure 8
presents the result of the Hesione simulation at a time just before the re-shock: the pressure field is superimposed on
the contours of the interfaces, and the bars for shot #961. This simulation shows that Von Karman alleys appear
downstream the bars. Accoustic and shock waves are also displayed.
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FIG. 8 Numerical simulation of shot #961. Interface shape and pressure field shortly before the re-shock of interface 2
(t=0.74 ms).

Density gradients can be generated by shock waves, accoustic waves, Von Karman alleys, and interfaces between
different materials. Flow momentum can also generate density gradients. In our case, this occurs in the jet vicinity
where matter gathers. Figure 9 presents the density maps in the jet area at t=0.53 ms and t=0.74 ms.

As indicated by arrows in Fig. 9, dense areas can be spotted at the base of the jet. We have simulated the Schlieren
diagnostic of the Hesione computation. For the shot #961, results are presented in Figs. 10 and 11 at t=0.53 ms and
t=0.74 ms, respectively. They are to be compared with the experimental pictures (Figs. 10-a, and 11a). In the real
shock tube, the membrane remnants stop the light propagation and appear in the pictures. However, they are not
taken into account in the numerical simulations.
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FIG. 9: Numerical simulation of shot #961. Density map near the jet at interface 2. a- t=0.53 ms. b- t=0.74 ms

Interfaces

Shock wave

()

( &
o1 <

[ *

FIG. 10: Shot #961 at t=0.53 ms. a- Experimental picture. b- Numerical Schlieren picture and superimposed interfaces (no
grid offset). ¢- Numerical Schlieren picture (grid offset: Ay = +0.3 mm). d- Numerical Schlieren picture (no grid offset).

In Figs. 10 and 11 (b,c and d parts), the diagnostic simulations are displayed. The shock waves, the accoustic
waves, and the Von Karman alleys can be identified. The dense areas at the base of the jet are also tracked by the
Schlieren diagnostic (see arrows in the Figs. 10-d, and 11-d). On the Figs. 10-b, and 11-b, the numerical interfaces
are purposely added to see how, in the vicinity of the jet, it becames difficult to separate the interface signal from the
dense area signal.

Let us now compare the numerical SFg/air interface with the corresponding experimental photograph for shot #961
(Fig. 12).

We emphasize that both numerical and experimental data are synchronized without any time shifting. At this moment,
the numerical and experimental shock waves superimpose (Figs. 12-a and b). On the photograph (Fig. 12-a), the
interface between SFg and air is blurred by the membrane remnants. Figure 12-c shows that the computed interface
overlaps the left boundary of the remnant zone. In earlier works [31], we showed that when a shock wave goes from
an heavy gas to a light one, the membrane remmants are expelled ahead of the interface. In this heavy-to-light
configuration, we also showed they have no influence on the interface dynamics. The Fig. 12-c¢ confirms our previous
assertions: the foamy zone consists of membrane remnants, stays ahead the SFg/air interface, and does not reduce
the perturbation growth. Using the numerical results (Figs. 8 and 11-c or d), we can also infer that the shimmering
aspect of the space between the grid bars and the interface is mainly due to the Van Karman alleys and accoustic
waves. The dense areas at the base of the jet are also identified on the experimental pictures. These results are
confirmed by shot #962 (Fig. 13).
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FIG. 12: Shot #961 before the re-shock of interface 2 (t=0.74 ms). a- Experimental picture. b- Numerical simulation with
the interfaces (black lines), and the pressure field (colored contours). c¢- Superposition of the experimental image, and the
numerical interfaces (green).

First conclusions can be drawn from these comparisons:
e the grid bars influence the growth of the perturbation at the interface,
e the resulting shape of the interface is sawtooth like,

e if the grid bars are taken into account, the agreement between numerical simulations and experimental data is
good,
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FIG. 13: Shot #962 before the re-shock of interface 2 (t=0.78 ms). a- Experimental picture. b- Numerical simulation with the
interfaces (black lines),and the pressure field (colored contours). ¢- Superposition of the experimental image and the numerical
interfaces (green).

e it is confirmed that in the heavy-to-light configuration, the membrane remnants are expelled away from the
interface, and do not influence its dynamics,

e dense areas at the base of the jet are seen by the Schlieren diagnostic.

V. GROWTH OF THE INSTABILITY

In this section, we show that, even if the grid bars induce a change of the interface shape, the growth of the
fundamental mode is not so modified. We also characterize the regimes of the instability.

A. Amplitude of the perturbation

In the following, as we focus on the interface dynamics, the origin of time is now taken at the moment when the
interface 2 is set into motion. We will denote the time as 7 (7 = ¢t — 0.36 ms).
From the previous section, we can interpret the experimental interface area as depicted by Fig. 14-a. Let us denote
the locations of the peak and valley of the real interface, as points A and B, and the locations of the peak and valley
of the right side limit of the foamy zone, as points C' and D.

The key data to estimate is the amplitude of the real interface which writes as a(t) = 1(ra — r5). Due to the
dense areas at the base of the jets, the location, rp, cannot be precisely estimated in the experiments. However, the
trajectories of the other points A, C' and D can be measured (Fig. 14-b, and Fig. 15-b). Let us note that the width,
J, of the membrane remnant zone grows steadily with time (Figs. 14-¢ and 15-¢). As a result, we make the following
assumption in order to estimate the location of point B:

TB%Tpf(S (4)
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FIG. 14: Interface study for the shot #961. a- Schematic of the Schlieren picture, b- experimental location for points A, C, D,
c- growth of the foamy zone, d- comparison between numerical and experimental estimates of the locations of the interface
peak and valley. Symbols are obtained from the experiments and formula (4). Curves are from the numerical simulations. For
the trajectory of the jet, the two curves are obtained by taking into account or not the extra small jet which is induced by the
grid.

The Figures 14-d and 15-d present the trajectories of the peak and valley of the interface for the two shots where
the experimental location of the jet, rp, is computed with formula (4). They are compared with two numerical
results. The first one is obtained by taking into account the amplitude of the small jet which appears at the tip of
the main jet, and the second one by removing this amplitude. The agreement between numerical and experimental
trajectories is good. This good agreement shows that our understanding of the experimental phenomenology which
has been established in the previous section is valid through time. The amplitude of the perturbation at the interface
is displayed on Fig. 16 for the two shots.

B. Regime of the instability

In the planar geometry, the linear phase of the RM and the RT instabilities is defined by |k a(7)| < 1, where k is

the wavenumber. For the RM instability, this phase is characterized by a perturbation growth which linearly increases
over time. In the nonlinear regime, the instability then saturates to a logarithmic growth [32]. In the present study,
the growth of the perturbation seems to linearly depends on time (Fig. 16) with no saturation.
In the cylindrical geometry, k a(t) is replaced by n a(t)/R where n is the mode number of the perturbation, and R
the radius of the unperturbed interface. At first order, the velocity of the interface can be considered as constant and
equal to AU. As a result, R can be approximated by R(t) = 0.1 — AU t, with AU = —82.4 m/s and —79 m/s for
shots #961 and #962. Just before the re-shock, |n a/R| = 1.52 for the shot #961. We conclude that, despite the
linear growth of the perturbation, the instability should be in the nonlinear regime at the re-shock time. It must be
checked that this lack of saturation is a general feature of the nonlinear growth in the convergent geometry, and not
a side effect due to the grid bars.
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C. Influence of the grid

As seen before, the grid induces a sawtooth shape at the interface. In the following, Fourier analyses of the shape
of the interface are performed in order to study the influence of the grid bars in the spectral domain. The Figure 17-a
presents for the shot #961, the growth of the first three harmonics for simulations with and without the grid bars.

It appears that the growth of the first harmonics with the grid bars is similar to the one without the grid. However,
a 14% increase of the growth rate can be noticed due to the grid. This value is constant over time. The influence of
the grid appears to be more important on the amplitude, 72 of the second harmonics. The latter should be negative

W with A = —0.687 and vy = %H:o- The numerical

0
simulation with the grid shows a positive growth of the second harmonics. However, around 7 = 0.15 ms, the growth
of the second harmonics returns to a classical negative growth, with a smaller growth rate than expected. The growth
of the third harmonics is, as the first one, enhanced by the grid bars. Even if substantial discrepancies exist on

since the weakly nonlinear theory [33] predicts 7o =



14

a) An(mm) b)

1
0. B5<6; 015 020 025 030 035 o T(ms)

——-a o 3[d;h;armonics

2nd harmonics ~~ - _ _

4. 1rst harmonics

FIG. 17: Analysis of the interface shape for the shot #961. a- Growth of the first three harmonics. b- Reconstructed shape at
7 = 0.35 ms. Full and dotted curves are obtained from simulations with and without the grid bars, respectively.

the growth rates of the second and third harmonics, the amplitudes of these harmonics remain small in comparison
with the amplitude of the first harmonics. As a result, the feed-back on the first harmonics stays low: the influence
of the grid on the first harmonics remains limited. These conclusions are in accordance with the ones which were
drawn from a previous study [34] in the planar case: the grid adds short-wavelength (swl) perturbations to the single-
mode interface with low feed-back on the fundamental mode. Another way to check that our experiment is a good
approximation of the canonical single mode problem is to reconstruct the shape of the interface with the first three
modes. The Figure 17-b presents such a reconstruction at 7 = 0.35 ms. Even if the fundamental mode amplitudes
are similar with and without the influence of the grid, the small discrepancies between the lower modes are enough
to transform a round shape in a sawtooth one. To conclude, these comparisons show that the lack of logarithmic
saturation of the growth of the perturbation is not due to the grid.

D. Theoretical modeling

All theoretical models about the growth of the RM and RT instability in the cylindrical geometry deal with the
canonical single mode problem. It is important to estimate the accuracy of such models either by comparison with
experiments or simulations. If a 14% discrepancy on the growth rate is tolerated, our experimental results could be
directly used as a reference. However, to reduce the uncertainties and specifically work on the fundamental mode, the
numerical simulation which has been performed without the grid will be used. In order to estimate if our case is a
pure RM instability (no post-shock acceleration of the interface), a numerical simulation with no perturbation at the
SFg/air interface has been performed. It appears that the 1D motion of the interface undergoes a slight deceleration
as it travels towards the apex (Fig. 18). This means that the instability is a RT instability which is initiated by a
RM instability.

Arm

0.1

* Hesione simulation
0.095¢ —— Fit
0.09 ———- Coasting trajectory
0.085¢
0.08
0.075

~. >‘l’ (ms)

0 ‘ 0.1 ‘ 02 ‘ 03

FIG. 18: Trajectory of the unperturbed interface from the Hesione simulation without any grid. Symbols, full and dashed lines
represent the raw numerical results, the subsequent fit, and the pure coasting trajectory, respectively.
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The radius of the unperturbed interface can be fitted by R(7) = 0.0997 — 79.74 7 — 16370 72 + 1.162 10% 73. At
7 = 350 ms, the distance from a coasting trajectoty is 3 mm which corresponds to a relative discrepancy for the radius
equal to 4%.

The linear growth of a single mode perturbation due to a RT instability in the cylindrical geometry for incompressible
fluids has been derived in Ref. [18]. The differential equation for this growth writes as:

d’a _Rda R
g2 T2pg  (mAt-1R)a=0 (5)

where n = 27/6y. This equation is valid in the linear regime i.e. as long as |n a/R| < 1. The initial conditions of the
shot #961 are n = 24.11, At = 0.687 and vy = —14.7 m/s. The resulting growth, a(t), is presented in Fig. 19

a (mm) A
® °
[}
— =
0.05
T (ms)
-2, 1
na
—Z=-1
4. | f—- =
- — ~.~
..
e  numerical simulation
. linear incompressible theory
——— linear compressible theory
— — — nonlinear compressible model
8 - = = theoretical limit of the linear theory

FIG. 19: Growth of the fundamental mode for the initial conditions of shot #961. Symbols represent the results obtained from
the Hesione code. Red and blue curves are obtained from the linear theory for incompressible and compressible fluids. The dot
curve is obtained from the nonlinear theory with compressible fluids. The dot-dashed line represents that theoretical range of
validity of the linear theory.

The linear theory for incompressible fluids deviates from the numerical simulation around 7 = 0.15 ms even if the
model is theoretically still valid. Two reasons can be invoked in order to explain this discrepancy: the compressibility
of the fluids, and the nonlinear regime of the instability.

The effect of compressibility have already been theoretically studied in Refs. [16, 17, 19] by considering uniform
compression rate in each fluid, or fixed density profiles. On the contrary, in our case, the implosion is initiated by
a collapsing shock wave. The Fig. 20 presents the radial velocities which are obtained from the Hesione code and
models using velocity potentials. The latter describe continuously converging flows which are not relevant to our
experiments.

In order to estimate the effect of compressibility, we consider time-dependent velocity and density profiles, v(r, 7) and
p(r,7). However, for the linear analysis, it is enough to know the first order variation of these profiles at the interface.
For the velocity, we write v(r,7) = R+ B(7) (r — R) in each fluid at the interface, and derive the resulting linear
analysis for the RT instability in the cylindrical geometry. This derivation takes into account the time and spatial
variations of the velocity and density at the interface (see Appendix B). The subsequent differential equation for the
amplitude of the perturbation writes as:

d%a R da R R?
g2 PO g AR et G g a =0 8

The functions C;(7) and Cy(7) are displayed in the Appendix B.
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e In Eq.(6), as far as the density is concerned, only the Atwood number is needed. In the studied case, the
numerical simulation gives the following fits for the densities in SFg and air at the interface: pgpg = 8.45 +
637.427 + 2.507 10672, and pgir = 1.55 4 167.247 + 3.3687 10972, The density of the SFg and the air increases
from 8.45 to 11.75 kg/m?, and from 1.55 to 2 kg/m?, respectively. However, the time-variation of the Atwood
number is small: from 0.687 to 0.706. As a result, the noticeable increase of the densities at the interface does
not play a significant role in the growth of the perturbation.

e The functions C1(7) and Cy(7) depend mainly on the velocity parameter 3. In our case, the time variation of
(3 is evaluated from the numerical simulation. Let us remark that if 3 = —R/R, the Eq.(6) reduces to Eq.(5).
This means that if the velocity profile at the interface writes as v(r,7) = R—-R /R (r — R), compressible fluids
would behave as incompressible ones for the RT instability. The time evolutions of the parameters 3(7), as well
as —R/R are displayed in Fig. 21.

4
1000p

500

-500f

-1000F

FIG. 21: Parameters § at the interface for SFg and air.

The growth of the perturbation which is predicted by the Eq. (6) is plotted in Fig. 19. Taking into account the
compressibility reduces the discrepancy between theory and the numerical simulation, even if the benefit is small.
This is remarkable since the values of 3 in SFg and air clearly depart from —R/R. The theoretical study of the role
of the compressibility through the functions Cy(7) and Ca(7), or the parameter (3 is let for future work. In our case,
the compressibility gets a small effect on the instability in the linear phase.

In order to estimate the effect of nonlinearity, we start from the weakly nonlinear analysis which is performed in
Ref. [23]. This perturbation theory for the RT instability in the cylindrical geometry gives:

1
=0t - R_gw(w +1) — An — 9] (n{)? (7)

where Ry = R(0), and 7™ is the amplitude of the first harmonics. The subscripts NL and L stand for nonlinear
and linear, respectively. The radius of convergence of this perturbation theory is small. In order to go beyond the
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singularity, it is common to a use continuation method. From Eq. (7), a P9 Pade approximant is build. It reads:

g

Lz [n2(342 1) = An 9] (1f)?

(8)

1
W=

The range of validity of Eq.(8) is limited since as the time tends to infinity, this equation predicts that nj(\})L tends to

0. However, it is sufficient to describe the weakly nonlinear regime of the instability. As seen in Fig. 19, the Pade
approximant is in good agreement with the numerical simulation. Let us note that the linear amplitude, 1y, which is
used to reach such a good agreement comes from the equation for compressible fluids, Eq. (6). The nonlinear growth
begins to deviate from the linear theory around 7 ~ 0.15 ms which corresponds to |na/R| ~ 0.5.

To summarize our analysis of the studied RM-RT instability in the cylindrical geometry:

e from 7 = 0 to 0.15 ms, which corresponds to /Ry = 1 to 0.88 and |na/r| = 0.17 to 0.41, the instability is in
the linear regime and the compressible effects are negligible. Furthermore, as comparison with pure RM theory
shows, the instability still does not feel any RT effect.

e from 7 = 0.15 to 0.17 ms, which corresponds to r/Ry = 0.88 to 0.86 and |na/r| = 0.41 to 0.47, the compress-
ibility must be taken into account. In our SFg/air configuration, the compressibility reduces the growth of the

instability. The deceleration of the interface begins to influence the growth rate. The interface dynamics is
driven by both RM and RT instabilities.

e from 7 = 0.17 to 0.36 ms, which corresponds to r/Ry = 0.86 to 0.74 and |na/r| = 0.47 to 1.54, the instability
is in the nonlinear regime, and even if its effect is small, the compressibility must be taken into account.

e In the cylindrical geometry, and for the studied convergence ratio, the saturation of the growth of the instability
in its nonlinear regime is characterized by a linear time variation.

VI. CONCLUDING REMARKS

This study has shown that in the cylindrical geometry the RM instability can transform into the RT instability. A
linear time dependent growth can be obtained in the nonlinear regim. We underline several points about hydrodynamic
instabilities in converging geometry:

e The motion of the background flow must be carefully analyzed in order to check if any deceleration occurs.
In our case, as the interface is not purely coasting. A relative discrepancy equal to 4% about the radius has
led to the disappearance of the expected classical RM logaritmic saturation. Another example of this apparent
postponement of the saturation of the RM instability can be found in laser experiments [6]. The authors
postulate that this lack of saturation is due to the suppression of the growth of secondary instabilities due to
the convergent effects. However, the cylindrical shell of these experiments undergoes a deceleration [37] which
was discarded by the authors. This deceleration leads to a 25% relative discrepancy between the actual and the
coasting trajectories. In the light of our study, these data could be reconsider to check if the postponent of the
saturation is due to the RT instability.

e The Eq.(8) succeeds to describe the weakly nonlinear growth of the RM+RT instability. However, the range of
validity of such a Pade approximant is quite limited. In order to predict the nonlinear growth of the instability,
theories without secular terms are needed. Our data provide a good test case for candidate theories in the
weakly nonlinear regime. For higher convergence ratio, it would be interesting to see if the growth remains
linear time dependent.

e In order to study the compressibility effects in ICF relevant experiments, the influence of the shock waves on
the background flow must be taken into account. Collapsing shock waves must be consider as a singular limit
condition for the velocity. Furthermore, they create a stratified fluid in their wake. If velocity potentials are to
be used to study the convergent RT instability seeded by RM instability, they must adequately describe such a
flow. Our study has shown that the spatial slope of v,.(r,t), 8(t), influences the growth of the instability. With
a relevant velocity potential, the Eq.(6) will be a useful tool to theoretically study when the compressibility
comes into play.
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Appendix A: The onset of a reflected shock wave at the interface 2

In this section, the origin of time is such that the rebounding shock waves on the grid bars would have a zero radius
at t = 0. In order to explain the onset of a reflected shock wave at the second interface, the grid which holds the
nitrocellulosic membrane must be taken into account. The bars of the grid are seen by the incident shock wave as an
immovable wall. As a result, the shock wave locally bounces back on the bars. In between the latter, normal refraction
occurs. The velocity of the reflected shock wave can be estimated [28], and equals to 111.9 m/s. The bars of the grid
are cylinders which diameter is ®p,- = 1 mm. The reflection of the shock wave on the bars generates an cylindrical
high pressure area around each bar. As a consequence, the interaction between the shock wave and the grid creates
an array of cylindrical expanding shock waves which are centered on each bar. Their initial diameters equal to @,
We note, 7jocal, the radius of each shock wave centered on each bar. Following Whitham and Guderley [28, 35], we
can estimate the trajectory, 7jocqi(t), of an expanding shock wave:

Tlocal(t) = (C )" (A1)

where n = g3&, n. =1+ % + % [28, 36], and C' a constant. In SFg, n equals to 0.8858. In order to compute C,

we use the initial conditions:

Tlocal (tO) = (C tO)n i % (AQ)
Flocal(to) =n C™ t{~1 =111.9

The duration ¢y can be seen as the time which would be needed by an hypothetical cylindrical expanding shock wave
generated at 7jocqr = 0 to reach ripcar = Ppar/2. Equations (A2) lead to the following solution: to = 3.958 us, and
C = 47.41. The bars are d = 1.4 cm away from each other. When the expanding shock waves have filled the gap
between bars, they coalesce. The resulting shock wave is now centered on the apex, and its velocity stabilizes. Going
from the local reference frame centered on each bar to the reference frame centered on the apex of the shock tube, we
write:

D) & rioear(t) +0.1 (A3)

The theoretical velocity of the expanding shock wave from the slowdown phase (Eq.(Al)) to the constant velocity
phase (Tjpcar = d/2 = WT(Q) = r'g) = 77.96 m/s) is presented on Fig. 22-a.
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FIG. 22: Reflected shock wave on the grid bar at the interface 2. a- Velocity. b- Trajectory. Full, and dashed lines represent
the expansion and the coalescence phases, respectively.

The resulting trajectory, rg) (t), is plotted in Fig. 22-b. It is in reasonable agreement with the experimental data:

at t = 0.6 ms, the radius of the reflected shock wave is estimated at 122 mm in the experiment, and 119 mm by
the theory. In order to assess our conclusions, eulerian numerical simulations with the Hesione code were run in the
planar geometry. These numerical simulations are solely devoted to the shock-interface interaction in the presence
of bars. As seen in Fig. 23, at t = bus, high pressure area are created on the bars. For approximatively 90us, the
resulting shock waves expand. Afterwards, they coalesce in a single wave.

In conclusion, the reflected wave at the second interface is a mix between shock waves at the bar locations, and
classical rarefaction in between. After expanding, the shock waves eventually coalesce, and overtake the rarefaction
waves.
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Appendix B: Linear theory for the RT instability in cylindrical geometry and compressible fluids

The equation of momentum conservation for compressible fluids writes as:

9+ (0.V)7 = =2V P+ g with p(r,t) (B1)
For incompressible fluids, v = —V® and AP = 0 gives the form of ®. For compressible fluids, it is always possible
to postulate ¥ = —V® even if the expression for ® is unknown. However, following Epstein and Amendt [16, 17], we

can assume that the perturbations are incompressible. As a result, let the potentials for the fluid near the apex, and
the fluid far from the apex write as:

O~ =05 + b, rlcos(16)

B2
Ot = + b rtlcos(10) (B2)

where ®° and @3 are the potentials for the unperturbed flow. For the unpertubed flow, at the interface n = R,
Bernoulli’s equations writes as:

— 0%y : - _
Py (5= —3R*—gn) + Py =C
(B3)
o + .
P (%5 — 3R — gn) + Py = CF
We now consider the perturbed flow:
P~ (% —3(0) —gn) + Py +6P~ =C~
(B4)
+
P (% = 3(W))? —gn) + P + 0Pt =CF
We have:
- — P _ gy i1
v, =R—1Ib v - cos(16) (B5)
v = R+ 1b rT1=1cos(16)

Substituting Eq.(B5) in Eq.(B4), and using Eq.(B3), we linearize the equations by considering that 7 = R + acos(16),
a/R << 1, and P~ = §P" at the interface:

po )by r~t+ RIb = —ga) = pg () (b rt — R1b "1 — g a) (B6)

Let us now study the equation of motion of the interface. _

If an incompressible fluid is considered, following Mikaelian [18], we write ® = —RR In(r), v, = —V® = R— B4 cos(16)
at the interface. Furthermore, from the definition of n, we also have v, = R+a cos(19). Equating these two expressions
for v, leads to the following differential equations for each fluid:

—Ba g Tl = (B7)
For compressible fluids, in the vicinity of the interface, it is always possible to write:
vF = R+ ¥ (t)(r — R) (BY)
Equating the previous equation with v, = R+a cos(10) gives:

BFa+lbfr-1=4 (B9)

If g+ = —%, the equations for the compressible fluids are similar to the ones for the incompressible ones. After
substitution of Egs.(B9) in Eq.(B6) and some cumbersome calculations, the following differential equation is obtained
for the linear growth of the amplitude a(t):

i— e At(t) + 480 - B a0y =0 (B10)
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