T. H. Murphy and D. Corbett, Plasticity during stroke recovery: from synapse to behaviour, Nature reviews Neuroscience, vol.10, pp.861-872, 2009.

C. Xerri, Experience-dependent reorganization of somatosensory and motor cortical areas: towards a neurobiology of rehabilitation. in Brain Mapping: from Neural Basis of Cognition to Surgical Applications, pp.111-129, 2010.

L. E. Enright, S. Zhang, and T. H. Murphy, Fine mapping of the spatial relationship between acute ischemia and dendritic structure indicates selective vulnerability of layer V neuron dendritic tufts within single neurons in vivo, Journal of cerebral blood flow and metabolism, vol.27, pp.1185-1200, 2007.

S. T. Carmichael, L. Wei, C. M. Rovainen, and T. A. Woolsey, New patterns of intracortical projections after focal cortical stroke, Neurobiology of disease, vol.8, pp.910-922, 2001.

C. E. Brown, C. Wong, and T. H. Murphy, Rapid morphologic plasticity of periinfarct dendritic spines after focal ischemic stroke, Stroke, vol.39, pp.1286-1291, 2008.

E. Taub, G. Uswatte, and R. Pidikiti, Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review, Journal of rehabilitation research and development, vol.36, pp.237-251, 1999.

K. M. Friel and R. J. Nudo, Recovery of motor function after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training, Somatosensory & motor research, vol.15, pp.173-189, 1998.

C. C. Lay, M. F. Davis, C. H. Chen-bee, and R. D. Frostig, Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke, PloS one, vol.5, p.11270, 2010.

D. A. Kozlowski, D. C. James, and T. Schallert, Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions, The Journal of neuroscience, vol.16, pp.4776-4786, 1996.

J. L. Humm, D. A. Kozlowski, D. C. James, J. E. Gotts, and T. Schallert, Usedependent exacerbation of brain damage occurs during an early post-lesion vulnerable period, Brain research, vol.783, pp.286-292, 1998.

S. B. Debow, J. E. Mckenna, B. Kolb, and F. Colbourne, Immediate constraintinduced movement therapy causes local hyperthermia that exacerbates cerebral cortical injury in rats, Canadian journal of physiology and pharmacology, vol.82, pp.231-237, 2004.

H. W. Joo, J. K. Hyun, T. U. Kim, S. H. Chae, and Y. I. Lee, Influence of constraint-induced movement therapy upon evoked potentials in rats with cerebral infarction, The European journal of neuroscience, vol.36, pp.3691-3697, 2012.

A. L. Ohlsson and B. B. Johansson, Environment influences functional outcome of cerebral infarction in rats, Stroke, vol.26, pp.644-649, 1995.

M. Grabowski, J. C. Sorensen, B. Mattsson, J. Zimmer, and B. B. Johansson, Influence of an enriched environment and cortical grafting on functional outcome in brain infarcts of adult rats, Experimental neurology, vol.133, pp.96-102, 1995.

J. Biernaskie, G. Chernenko, and D. Corbett, Efficacy of rehabilitative experience declines with time after focal ischemic brain injury, The Journal of neuroscience, vol.24, pp.1245-1254, 2004.

A. Sigler, M. H. Mohajerani, and T. H. Murphy, Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.11759-11764, 2009.

C. E. Brown, K. Aminoltejari, H. Erb, I. R. Winship, and T. H. Murphy, In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites, The Journal of neuroscience, vol.29, pp.1719-1734, 2009.

I. R. Winship and T. H. Murphy, Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network, The Neuroscientist, vol.15, pp.507-524, 2009.

J. O. Coq and C. Xerri, Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment, The European journal of neuroscience, vol.11, pp.2597-2608, 1999.

C. Xerri and Y. Zennou-azogui, Influence of the postlesion environment and chronic piracetam treatment on the organization of the somatotopic map in the rat primary somatosensory cortex after focal cortical injury, Neuroscience, vol.118, pp.161-177, 2003.

A. C. Tang and T. Verstynen, Early life environment modulates 'handedness' in rats, Behavioural brain research, vol.131, pp.1-7, 2002.

B. E. Peterson and M. M. Merzenich, MAP: a Macintosh program for generating categorical maps applied to cortical mapping, Journal of neuroscience methods, vol.57, pp.133-144, 1995.

R. S. Waters, C. X. Li, and C. A. Mccandlish, Relationship between the organization of the forepaw barrel subfield and the representation of the forepaw in layer IV of rat somatosensory cortex, Experimental brain research, vol.103, pp.183-197, 1995.

J. O. Coq and C. Xerri, Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats, Experimental brain research, vol.121, pp.191-204, 1998.

Y. Ohmoto, H. Fujisawa, T. Ishikawa, H. Koizumi, and T. Matsuda, Sequential changes in cerebral blood flow, early neuropathological consequences and blood-brain barrier disruption following radiofrequency-induced localized hyperthermia in the rat, International journal of hyperthermia, vol.12, pp.321-334, 1996.

H. Adachi, H. Fujisawa, T. Maekawa, T. Yamashita, and H. Ito, Changes in the extracellular glutamate concentrations in the rat cortex following localized by hyperthermia, International journal of hyperthermia, vol.11, pp.587-599, 1995.

W. M. Jenkins and M. M. Merzenich, Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke, Progress in brain research, vol.71, pp.249-266, 1987.

G. S. Doetsch, K. W. Johnston, and C. J. Hannan, Physiological changes in the somatosensory forepaw cerebral cortex of adult raccoons following lesions of a single cortical digit representation, Experimental neurology, vol.108, pp.162-175, 1990.

C. Xerri, M. M. Merzenich, B. E. Peterson, and W. Jenkins, Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys, Journal of neurophysiology, vol.79, pp.2119-2148, 1998.

U. T. Eysel and R. Schmitd-kastner, Neuronal dysfunction at the border of focal lesions in cat visual cortex, Neurosciences Letters, vol.131, pp.45-48, 1991.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, and S. E. Croul, A new model of localized ischemia in rat somatosensory cortex produced by cortical compression, Stroke, vol.32, pp.2615-2623, 2001.

J. Kundrotiene, A. Wagner, and S. Liljequist, Extradural compression of sensorimotor cortex: a useful model for studies on ischemic brain damage and neuroprotection, Journal of neurotrauma, vol.19, pp.69-84, 2002.

M. Martinez, J. M. Brezun, and C. Xerri, Sensorimotor experience influences recovery of forelimb abilities but not tissue loss after focal cortical compression in adult rats, PloS one, vol.6, p.16726, 2011.

B. K. Mansoori, L. Jean-charles, B. Touvykine, A. Liu, and S. Quessy, Acute inactivation of the contralesional hemisphere for longer durations improves recovery after cortical injury, Experimental neurology, vol.254, pp.18-28, 2014.

B. B. Johansson and A. L. Ohlsson, Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat, Experimental Neurology, vol.139, pp.322-327, 1996.

M. J. Passineau, E. J. Green, and W. D. Dietrich, Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats, Experimental neurology, vol.168, pp.373-384, 2001.

M. Maegele, M. Lippert-gruener, T. Ester-bode, J. Garbe, and B. Bouillon, Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats, The European journal of neuroscience, vol.21, pp.2406-2418, 2005.

M. G. Burnett, J. A. Detre, and J. H. Greenberg, Activation-flow coupling during graded cerebral ischemia, Brain research, vol.1047, pp.112-118, 2005.

M. G. Burnett, T. Shimazu, T. Szabados, H. Muramatsu, and J. A. Detre, Electrical forepaw stimulation during reversible forebrain ischemia decreases infarct volume, Stroke, vol.37, pp.1327-1331, 2006.

M. F. Davis, C. C. Lay, C. H. Chen-bee, and R. D. Frostig, Amount but not pattern of protective sensory stimulation alters recovery after permanent middle cerebral artery occlusion, Stroke, vol.42, pp.792-798, 2011.

R. D. Frostig, C. C. Lay, and M. F. Davis, A rat's whiskers point the way toward a novel stimulus-dependent, protective stroke therapy, The Neuroscientist, vol.19, pp.313-328, 2013.

C. Du, R. Hu, C. A. Csernansky, C. Y. Hsu, and D. W. Choi, Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis, Journal of cerebral blood flow and metabolism, vol.16, pp.195-201, 1996.

R. Hata, K. Maeda, D. Hermann, G. Mies, and K. A. Hossmann, Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice, Journal of cerebral blood flow and metabolism, vol.20, pp.306-315, 2000.

R. A. Green, T. Odergren, and T. Ashwood, Animal models of stroke: do they have value for discovering neuroprotective agents?, Trends in pharmacological science, vol.24, pp.402-408, 2003.

M. J. Perez-alvarez, M. Mdel, C. , A. M. Ordonez, L. Wandosell et al., Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia, Journal of neuroinflammation, vol.9, p.157, 2012.

A. Risedal, J. Zeng, and B. B. Johansson, Early training may exacerbate brain damage after focal brain ischemia in the rat, Journal of cerebral blood flow and metabolism, vol.19, pp.997-1003, 1999.

C. J. Chu and T. A. Jones, Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage, Experimental neurology, vol.166, pp.403-414, 2000.

T. Back, T. Hemmen, and O. G. Schuler, Lesion evolution in cerebral ischemia, Journal of neurology, vol.251, pp.388-397, 2004.

T. Dalkara and E. M. Arsava, Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis, Journal of cerebral blood flow and metabolism, vol.32, pp.2091-2099, 2012.

S. A. Neeper, F. Gomez-pinilla, J. Choi, and C. Cotman, Exercise and brain neurotrophins, Nature, vol.373, p.109, 1995.

J. P. Kesslak, V. So, J. Choi, C. W. Cotman, and F. Gomez-pinilla, Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance?, Behavioral neuroscience, vol.112, pp.1012-1019, 1998.

B. R. Ickes, T. M. Pham, L. A. Sanders, D. S. Albeck, and A. H. Mohammed, Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain, Experimental neurology, vol.164, pp.45-52, 2000.

M. Lippert-gruener, M. Maegele, J. Garbe, and D. N. Angelov, Late effects of enriched environment (EE) plus multimodal early onset stimulation (MEOS) after traumatic brain injury in rats: Ongoing improvement of neuromotor function despite sustained volume of the CNS lesion, Experimental neurology, vol.203, pp.82-94, 2007.

C. Xerri, M. Benelhadj, and F. Harlay, Deficits and recovery of body stabilization during acrobatic locomotion after focal lesion to the somatosensory cortex: a kinematic analysis combined with cortical mapping, Archives italiennes de biologie, vol.142, pp.217-236, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00095265

J. Liepert, H. Bauder, H. R. Wolfgang, W. H. Miltner, and E. Taub, Treatment-induced cortical reorganization after stroke in humans, Stroke, vol.31, pp.1210-1216, 2000.

R. J. Nudo, B. M. Wise, F. Sifuentes, and G. W. Milliken, Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct, Science, vol.272, pp.1791-1794, 1996.

S. Barbay, E. J. Plautz, K. M. Friel, S. B. Frost, and N. Dancause, Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys, Experimental brain research, vol.169, pp.106-116, 2006.

C. Xerri, M. M. Merzenich, W. Jenkins, and S. Santucci, Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys, Cerebral cortex, vol.9, pp.264-276, 1999.

R. D. Frostig, Y. Xiong, C. H. Chen-bee, E. Kvasnak, and J. Stehberg, Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads, The Journal of neuroscience, vol.28, pp.13274-13284, 2008.

S. E. Laskin and W. A. Spencer, Cutaneous masking. II. Geometry of excitatory andinhibitory receptive fields of single units in somatosensory cortex of the cat, Journal of neurophysiology, vol.42, pp.1061-1082, 1979.

A. G. Brown, D. J. Maxwell, and A. D. Short, Receptive fields and in-field afferent inhibition of neurones in the cat's lateral cervical nucleus, The Journal of physiology, vol.413, pp.119-137, 1989.

R. Domann, G. Hagemann, M. Kraemer, H. J. Freund, and O. W. Witte, Electrophysiological changes in the surrounding brain tissue of photochemically induced cortical infarcts in the rat, Neuroscience letters, vol.155, pp.69-72, 1993.

T. Mittmann, H. J. Luhmann, R. Schmidt-kastner, U. T. Eysel, and H. Weigel, Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro, Neuroscience, vol.60, pp.891-906, 1994.

K. Schiene, C. Bruehl, K. Zilles, M. Qu, and G. Hagemann, Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis, Journal of cerebral blood flow and metabolism, vol.16, pp.906-914, 1996.

T. Neumann-haefelin, J. F. Staiger, C. Redecker, K. Zilles, and J. M. Fritschy, Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats, Neuroscience, vol.87, pp.871-879, 1998.

M. Que, O. W. Witte, T. Neumann-haefelin, K. Schiene, and M. Schroeter, Changes in GABA(A) and GABA(B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study, Neuroscience, vol.93, pp.1233-1240, 1999.

A. Zepeda, L. Vaca, C. Arias, and F. Sengpiel, Reorganization of visual cortical maps after focal ischemic lesions, Journal of cerebral blood flow and metabolism, vol.23, pp.811-820, 2003.

M. Farrant and Z. Nusser, Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors, Nature reviews Neuroscience, vol.6, pp.215-229, 2005.

J. Glykys and I. Mody, Activation of GABAA receptors: views from outside the synaptic cleft, Neuron, vol.56, pp.763-770, 2007.

V. Goubard, E. Fino, and L. Venance, Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing, The Journal of physiology, vol.589, pp.2301-2319, 2011.

A. N. Clarkson, B. S. Huang, S. E. Macisaac, I. Mody, and S. T. Carmichael, Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke, Nature, vol.468, pp.305-309, 2010.
DOI : 10.1038/nature09511

URL : http://europepmc.org/articles/pmc3058798?pdf=render

S. T. Carmichael, Brain excitability in stroke: the yin and yang of stroke progression, Archives of neurology, vol.69, pp.161-167, 2012.

A. N. Clarkson, Perisynaptic GABA Receptors The Overzealous Protector, Advances in pharmacological sciences, p.708428, 2012.
DOI : 10.1155/2012/708428

URL : http://downloads.hindawi.com/journals/aps/2012/708428.pdf

T. P. Hicks and R. W. Dykes, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain research, vol.274, pp.160-164, 1983.
DOI : 10.1016/0006-8993(83)90533-4

R. W. Dykes, P. Landry, R. Metherate, and T. P. Hicks, Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons, Journal of neurophysiology, vol.52, pp.1066-1093, 1984.

U. T. Eysel, Perilesional cortical dysfunction and reorganization, Advances in neurology, vol.73, pp.195-206, 1997.

F. Zhang, C. Li, R. Wang, D. Han, and Q. G. Zhang, Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion, Neuroscience, vol.150, pp.938-949, 2007.

A. Zepeda, F. Sengpiel, M. A. Guagnelli, L. Vaca, and C. Arias, Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits, The Journal of neuroscience, vol.24, pp.1812-1821, 2004.

A. N. Clarkson, J. J. Overman, S. Zhong, R. Mueller, and G. Lynch, AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke, The Journal of neuroscience, vol.31, pp.3766-3775, 2011.
DOI : 10.1523/jneurosci.5780-10.2011

URL : http://www.jneurosci.org/content/31/10/3766.full.pdf

G. W. Glazner and M. P. Mattson, Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity, Experimental neurology, vol.161, pp.442-452, 2000.

C. R. Bramham and E. Messaoudi, BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis, Progress in neurobiology, vol.76, pp.99-125, 2005.

K. Gottmann, T. Mittmann, and V. Lessmann, BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses, Experimental brain research, vol.199, pp.203-234, 2009.

L. A. Mamounas, M. E. Blue, J. A. Siuciak, and C. A. Altar, Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain, The Journal of neuroscience, vol.15, pp.7929-7939, 1995.

R. Koyama, M. K. Yamada, S. Fujisawa, R. Katoh-semba, and N. Matsuki, Brain-derived neurotrophic factor induces hyperexcitable reentrant circuits in the dentate gyrus, The Journal of neuroscience, vol.24, pp.7215-7224, 2004.

B. Lu, G. Nagappan, X. Guan, P. J. Nathan, and P. Wren, BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases, Nature reviews Neuroscience, vol.14, pp.401-416, 2013.

P. Kermani and B. Hempstead, Brain-derived neurotrophic factor: a newly described mediator of angiogenesis, Trends in cardiovascular medicine, vol.17, pp.140-143, 2007.

M. Ploughman, V. Windle, C. L. Maclellan, N. White, and J. J. Doré, Brainderived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats, Stroke, vol.40, pp.1490-1495, 2009.