F. Savart, Mémoire sur la constitution des Veines liquides lancées par des orifices circulaires en mince paroi, Ann. Chim. Phys. France, vol.53, p.337, 1833.

J. Plateau, Statique Expérimentale et Théorique Des Liquides Soumis Aux Seules Forces Moléculaires, 1873.

J. L. Rayleigh, On the instability of a cylinder of viscous liquid under capillary forces, Phil. Mag, vol.34, p.145, 1892.

J. Eggers, Universal Pinching of 3D Axisymmetric Free Surface Flow, Phys. Rev. Lett, vol.71, p.3458, 1993.

D. Papageorgiou, On the breakup of viscous liquid threads, Phys. Fluids, vol.7, p.1529, 1995.

A. Rothert, R. Richter, and I. Rehberg, Transition from Symmetric to Asymmetric Scaling Function Before Drop Pinch-Off, Phys. Rev. Lett, vol.87, p.84501, 2001.
DOI : 10.1103/physrevlett.87.084501

URL : https://epub.uni-bayreuth.de/4029/1/PhysRevLett.87.084501.pdf

B. Ambravaneswaran, H. Subramani, S. Phillips, and O. Basaran, Dripping-Jetting Transitions in a Dripping Faucet, Phys. Rev. Lett, vol.93, p.34501, 2004.
DOI : 10.1103/physrevlett.93.034501

U. Sauter and H. Buggish, Stability of initially slow viscous jets driven by gravity, J. Fluid Mech, vol.533, p.237, 2005.

S. Senchenko and T. Bohr, Shape and stability of a viscous thread, Phys. Rev. E, vol.71, p.56301, 2005.

A. Javadi, J. Eggers, D. Bonn, M. Habibi, and N. Ribe, Delayed Capillary Breakup of Falling Viscous Jets, Phys. Rev. Lett, vol.110, p.144501, 2013.

S. , L. Dizès, and E. Villermaux, Capillary jet breakup by noise amplification, J. Fluid Mech, vol.810, p.281, 2016.

G. Mckinley, Visco-elasto-capillary thinning and breakup of complex fluids, Rheology Reviews, pp.1-48, 2005.

R. Suryo and O. Basaran, Local dynamics during pinch-off of liquid threads of power law fluids: Scaling analysis and self-similarity, J. Non-Newtonian Fluid Mech, vol.138, p.134, 2006.

J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys, vol.71, p.36601, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00098347

R. Furbank and J. Morris, An experimental study of particle effects on drop formation, Phys. Fluids, vol.16, p.1777, 2004.

C. Bonnoit, T. Bertrand, E. Clément, and A. Lindner, Accelerated drop detachment in granular suspensions, Phys. Fluids, vol.24, p.43304, 2012.

W. Mathues, C. Mcilroy, O. Harlen, and C. Clasen, Capillary breakup of suspensions near pinch-off, Phys. Fluids, vol.27, p.93301, 2015.

É. Guazzelli and O. Pouliquen, Rheology of dense granular suspensions, J. Fluid Mech, vol.852, p.35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01902053

, for the movies of the sequence shown in Figs. 1(b) and 2(a)

M. Miskin and H. Jaeger, Droplet formation and scaling in dense suspensions, Proc. Natl. Acad. Sci. USA, vol.109, p.4389, 2012.

Z. Pan, N. Louvet, Y. Hennequin, H. Kellay, and D. Bonn, Drop formation in shear-thickening granular suspensions, Phys. Rev. E, vol.92, p.52203, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01256933

J. Château, É. Guazzelli, and H. Lhuissier, Pinch-off of a viscous suspension thread, J. Fluid Mech, vol.852, p.178, 2018.

, The surface velocity of the jet is measured locally from the axial displacement of the jet surface corrugation pattern caused by the particles. A vector encoding the axial corrugation pattern, as observed from the camera's viewpoint, is obtained by averaging the image intensity over each vertical pixel line. Conventional particle image velocimetry routines of subvector correlation between successive frames and subpixel interpolation yield the displacement

D. Brown, A study of the behavior of a thin sheet of moving liquid, J. Fluid Mech, vol.10, p.297, 1961.

N. Clarke, The asymptotic effects of surface tension and viscosity on an axially-symetric free jet of liquid under gravity, Quart. Journ. Mech. Appl. Math, vol.22, p.247, 1969.

J. Eggers and T. Dupont, Drop formation in a one-dimensional approximation of the Navier-Stokes equation, J. Fluid Mech, vol.262, p.205, 1994.

R. Seto, G. Giusteri, and A. Martiniello, Microstructure and thickening of dense suspensions under extensional and shear flows, J. Fluid Mech, vol.825, p.3, 2017.

O. Cheal and C. Ness, Rheology of dense granular suspensions under extensional flow, J. Rheol, vol.62, p.501, 2018.

, Anton Paar MCR 501, with radius R = 25 mm and rotation rate ?) immersed inside a cylindrical container (with radius 30 mm) at a distance e from the flat bottom of the container. It is calibrated with two Newtonian liquids giving the same calibration. The shear viscosity of the suspensions is measured over the same range of deformation rates, 1 s ?1 3?R?/2e 10 s ?1 , as in the jet (1 s ?1 ? z u 10 s ?1 ). The measurements are time independent, shear rate independent (within 10%), and gap independent, The shear viscosity is measured in a dedicated plate/plate device allowing a large cell gap (e > 60d), which consists of a rotating disk

, (2?/k ? 6 cm and h ? 1-1.5 mm), agrees with the most unstable mode of the Plateau-Rayleigh instability of a cylindrical thread, k max h = ? 2/(1 + 3Oh) ? 0.15-0.16, expected from slender slope theory for the large local Ohnesorge number of the jet (Oh = ?/ ? ?? h ? 25-30, The wave number observed in Fig. 3(b)

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, pp.12001-12009, 1961.