J. D. Mougous, A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science, vol.312, pp.1526-1530, 2006.

S. Pukatzki, Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system, Proc. Natl. Acad. Sci. USA 103, pp.1528-1533, 2006.

R. D. Hood, A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria, Cell Host. Microbe, vol.7, pp.25-37, 2010.

S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proc. Natl. Acad. Sci. USA, vol.104, pp.15508-15513, 2007.

E. Cascales, The type VI secretion toolkit, EMBO Rep, vol.9, pp.735-741, 2008.

E. Cascales and C. Cambillau, Structural biology of type VI secretion systems, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.367, pp.1102-1111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458261

V. S. Nguyen, Towards a complete structural deciphering of Type VI secretion system, Curr. Opin. Struct. Biol, vol.49, pp.77-84, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01780753

A. Eshraghi, Secreted effectors encoded within and outside of the Francisella pathogenicity island promote intramacrophage growth, Cell Host. Microbe, vol.20, pp.573-583, 2016.

M. M. Shneider, PAAR-repeat proteins sharpen and diversify the type VI secretion system spike, Nature, vol.500, pp.350-353, 2013.

M. Basler, M. Pilhofer, G. P. Henderson, G. J. Jensen, and J. J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.483, pp.182-186, 2012.

P. G. Leiman, Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proc. Natl. Acad. Sci. USA, vol.106, pp.4154-4159, 2009.

D. Veesler and C. Cambillau, A common evolutionary origin for tailedbacteriophage functional modules and bacterial machineries. Microbiol, Mol. Biol. Rev, vol.75, pp.423-433, 2011.

L. G. Pell, V. Kanelis, L. W. Donaldson, P. L. Howell, and A. R. Davidson, The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system, Proc. Natl. Acad. Sci. USA, vol.106, pp.4160-4165, 2009.

P. Ge, Atomic structures of a bactericidal contractile nanotube in its preand postcontraction states, Nat. Struct. Mol. Biol, vol.22, pp.377-382, 2015.

S. Kanamaru, Structure of the cell-puncturing device of bacteriophage T4, Nature, vol.415, pp.553-557, 2002.

P. G. Leiman, P. R. Chipman, V. A. Kostyuchenko, V. V. Mesyanzhinov, and M. G. Rossmann, Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host, Cell, vol.118, pp.419-429, 2004.

L. Cardarelli, Phages have adapted the same protein fold to fulfill multiple functions in virion assembly, Proc. Natl. Acad. Sci. USA, vol.107, pp.14384-14389, 2010.

J. Wang, Cryo-EM structure of the extended type VI secretion system sheath-tube complex, Nat. Microbiol, vol.2, pp.1507-1512, 2017.

M. Kudryashev, Structure of the type VI secretion system contractile sheath, Cell, vol.160, pp.952-962, 2015.

D. L. Clemens, P. Ge, B. Y. Lee, M. A. Horwitz, and Z. H. Zhou, Atomic structure of T6SS reveals interlaced array essential to function, Cell, vol.160, pp.940-951, 2015.

Y. W. Chang, L. A. Rettberg, D. R. Ortega, and G. J. Jensen, In vivo structures of an intact type VI secretion system revealed by electron cryotomography, EMBO Rep, vol.18, pp.1090-1099, 2017.

E. Durand, Biogenesis and structure of a type VI secretion membrane core complex, Nature, vol.523, pp.555-560, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01778556

A. Zoued, Priming and polymerization of a bacterial contractile tail structure, Nature, vol.531, pp.59-63, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439072

V. S. Nguyen, Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex, Nat. Microbiol, vol.2, p.17103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780712

A. Zoued, TssA: the cap protein of the type VI secretion system tail, Bioessays, vol.39, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780742

Y. R. Brunet, A. Zoued, F. Boyer, B. Douzi, and E. Cascales, The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization, PLoS Genet, vol.11, p.1005545, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01778563

N. M. Taylor, Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.533, pp.346-352, 2016.

G. English, O. Byron, F. R. Cianfanelli, A. R. Prescott, and S. J. Coulthurst, Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex, Biochem. J, vol.461, pp.291-304, 2014.

A. Walls, Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy, Protein Sci, vol.26, pp.113-121, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01664349

T. Nakane, D. Kimanius, E. Lindahl, and S. H. Scheres, Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION, Elife, vol.7, 2018.

S. Ovchinnikov, Large-scale determination of previously unsolved protein structures using evolutionary information, vol.4, p.9248, 2015.

S. Ovchinnikov, Protein structure determination using metagenome sequence data, Science, vol.355, pp.294-298, 2017.

Y. Song, High-resolution comparative modeling with RosettaCM, Structure, vol.21, pp.1735-1742, 2013.

R. Y. Wang, Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta, Elife, vol.5, 2016.

F. Dimaio, Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement, Nat. Methods, vol.12, pp.361-365, 2015.

S. Ovchinnikov, Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta, Proteins, vol.84, pp.67-75, 2016.

B. Frenz, A. C. Walls, E. H. Egelman, D. Veesler, and F. Dimaio, RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps, Nat. Methods, vol.14, pp.797-800, 2017.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.486-501, 2010.

S. Hare, Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase, EMBO J, vol.26, pp.4926-4934, 2007.

N. M. Taylor, M. J. Van-raaij, and P. G. Leiman, Contractile injection systems of bacteriophages and related systems, Mol. Microbiol, vol.108, pp.6-15, 2018.

A. Zoued, TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system, J. Biol. Chem, vol.288, pp.27031-27041, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458230

D. Veesler, Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism, Proc. Natl. Acad. Sci. USA, vol.109, pp.8954-8958, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02066321

G. Sciara, Structure of lactococcal phage p2 baseplate and its mechanism of activation, Proc. Natl. Acad. Sci. USA, vol.107, pp.6852-6857, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595268

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. USA, vol.95, pp.5752-5756, 1998.

S. Nazarov, Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end, EMBO J, vol.37, 2018.

M. L. Yap, Role of bacteriophage T4 baseplate in regulating assembly and infection, Proc. Natl. Acad. Sci. USA, vol.113, pp.2654-2659, 2016.

L. Logger, M. S. Aschtgen, M. Guerin, E. Cascales, and E. Durand, Molecular dissection of the interface between the Type VI secretion TssM cytoplasmic domain and the TssG baseplate component, J. Mol. Biol, vol.428, pp.4424-4437, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780174

A. Vettiger, J. Winter, L. Lin, and M. Basler, The type VI secretion system sheath assembles at the end distal from the membrane anchor, Nat. Commun, vol.8, p.16088, 2017.

D. Bock, In situ architecture, function, and evolution of a contractile injection system, Science, vol.357, pp.713-717, 2017.

C. Suloway, Automated molecular microscopy: the new Leginon system, J. Struct. Biol, vol.151, pp.41-60, 2005.

N. R. Voss, C. K. Yoshioka, M. Radermacher, C. S. Potter, and . Carragherb,

, DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy, J. Struct. Biol, vol.166, pp.205-213, 2009.

G. C. Lander, Appion: an integrated, database-driven pipeline to facilitate EM image processing, J. Struct. Biol, vol.166, pp.95-102, 2009.

S. Q. Zheng, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy, Nat. Methods, vol.14, pp.331-332, 2017.

K. Zhang and . Gctf, Real-time CTF determination and correction, J. Struct. Biol, vol.193, pp.1-12, 2016.

A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination, Nat. Methods, vol.14, pp.290-296, 2017.

S. H. Scheres and S. Chen, Prevention of overfitting in cryo-EM structure determination, Nat. Methods, vol.9, pp.853-854, 2012.

P. B. Rosenthal and R. Henderson, Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy, J. Mol. Biol, vol.333, pp.721-745, 2003.

S. Chen, High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy, Ultramicroscopy, vol.135, pp.24-35, 2013.

G. Cardone, J. B. Heymann, and A. C. Steven, One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions, J. Struct. Biol, vol.184, pp.226-236, 2013.

D. S. Marks, T. A. Hopf, and C. Sander, Protein structure prediction from sequence variation, Nat. Biotechnol, vol.30, pp.1072-1080, 2012.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol, vol.372, pp.774-797, 2007.

T. D. Goddard, C. C. Huang, and T. E. Ferrin, Visualizing density maps with UCSF Chimera, J. Struct. Biol, vol.157, pp.281-287, 2007.

T. D. Goddard, UCSF ChimeraX: Meeting modern challenges in visualization and analysis, Protein Sci, vol.27, pp.14-25, 2018.