J. E. Garneau and S. Moineau, Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Fact, vol.10, 2011.

H. Deveau, S. J. Labrie, M. Chopin, and S. Moineau, Biodiversity and classification of lactococcal phages, Appl. Environ. Microbiol, vol.72, pp.4338-4346, 2006.

J. Mahony, J. Murphy, and D. Van-sinderen, Lactococcal 936-type phages and dairy fermentation problems: From detection to evolution and prevention, Front. Microbiol, vol.3, p.335, 2012.

S. Hayes, R. Vincentelli, J. Mahony, A. Nauta, L. Ramond et al., Functional carbohydrate binding modules identified in evolved Dits from siphophages infecting various gram-positive bacteria, Mol. Microbiol, vol.110, pp.777-795, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094299

J. Murphy, F. Bottacini, J. Mahony, P. Kelleher, H. Neve et al., Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages, Sci. Rep, 2016.

J. Mahony and D. Van-sinderen, Structural aspects of the interaction of dairy phages with their host bacteria, vol.4, pp.1410-1424, 2012.

M. Dunne, M. Hupfeld, J. Klumpp, and M. Loessner, Molecular basis of bacterial host interactions by gram-positive targeting bacteriophages, Viruses, vol.10, 2018.

I. J. Molineux and D. Panja, Popping the cork: Mechanisms of phage genome ejection, Nat. Rev. Microbiol, vol.11, pp.194-204, 2013.

N. M. Taylor, N. S. Prokhorov, R. C. Guerrero-ferreira, M. M. Shneider, C. Browning et al., Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.533, pp.346-352, 2016.

B. Hu, W. Margolin, I. J. Molineux, and J. Liu, Structural remodeling of bacteriophage T4 and host membranes during infection initiation, Proc. Natl. Acad. Sci, vol.112, pp.4919-4928, 2015.

D. Veesler, G. Robin, J. Lichière, I. Auzat, P. Tavares et al., Crystal structure of bacteriophage SPP1 distal tail protein (gp 19.1): A baseplate hub paradigm in Gram+ infecting phages, J. Biol. Chem, vol.285, pp.36666-36673, 2010.

I. Vinga, C. Baptista, I. Auzat, I. Petipas, R. Lurz et al., Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection, Mol. Microbiol, vol.83, pp.289-303, 2012.

G. Sciara, C. Bebeacua, P. Bron, D. Tremblay, M. Ortiz-lombardia et al., Structure of lactococcal phage p2 baseplate and its mechanism of activation, Proc. Natl. Acad. Sci, vol.107, pp.6852-6857, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595268

S. Spinelli, A. Desmyter, C. T. Verrips, H. J. De-haard, S. Moineau et al., Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses, Nat. Struct. Mol. Biol, vol.13, pp.85-89, 2006.

C. Bebeacua, P. Bron, L. Lai, C. S. Vegge, L. Brondsted et al., Structure and molecular assignment of lactococcal phage TP901-1 baseplate, J. Biol. Chem, vol.285, pp.39079-39086, 2010.

D. Veesler, S. Spinelli, J. Mahony, J. Lichière, S. Blangy et al., Structure of the phage TP901-1 1.8 MDA baseplate suggests an alternative host adhesion mechanism, Proc. Natl. Acad. Sci, vol.109, pp.8954-8958, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02066321

B. Collins, C. Bebeacua, J. Mahony, S. Blangy, F. P. Douillard et al., Structure and functional analysis of the host-recognition device of lactococcal phage Tuc2009, J. Virol, vol.87, pp.8429-8440, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02066311

D. Veesler and C. Cambillau, A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol, Mol. Biol. Rev, vol.75, pp.423-433, 2011.

C. Bebeacua, L. Lai, C. S. Vegge, L. Brøndsted, M. Van-heel et al., Visualizing a complete siphoviridae by single-particle electron microscopy: The structure of lactococcal phage TP901-1, J. Virol, 2012.

V. Campanacci, D. Veesler, J. Lichière, S. Blangy, G. Sciara et al., Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli, J. Struct. Biol, vol.172, pp.75-84, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01595270

D. A. Shepherd, D. Veesler, J. Lichiere, A. E. Ashcroft, and C. Cambillau, Unraveling lactococcal phages baseplate assembly by mass spectrometry, Mol. Cell. Proteom, vol.10, 2011.

S. Lhuillier, M. Gallopin, B. Gilquin, S. Brasilès, N. Lancelot et al., Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating, Proc. Natl. Acad. Sci, vol.106, pp.8507-8512, 2009.

D. M. Tremblay, M. Tegoni, S. Spinelli, V. Campanacci, S. Blangy et al., Receptor-binding protein of Lactococcus lactis phages: Identification and characterization of the saccharide receptor-binding site, J. Bacteriol, vol.188, pp.2400-2410, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066247

S. Ricagno, V. Campanacci, S. Blangy, S. Spinelli, D. Tremblay et al., Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bil170, J. Virol, vol.80, pp.9331-9335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066261

S. Spinelli, D. Veesler, C. Bebeacua, and C. Cambillau, Structures and host-adhesion mechanisms of lactococcal siphophages, Front. Microbiol, vol.5, 2014.

J. Mahony, W. Kot, J. Murphy, S. Ainsworth, H. Neve et al., Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny, Appl. Environ. Microbiol, vol.79, pp.4385-4392, 2013.

J. Murphy, B. Royer, J. Mahony, L. Hoyles, K. Heller et al., Biodiversity of lactococcal bacteriophages isolated from 3 gouda-type cheese-producing plants, J. Dairy Sci, vol.96, pp.4945-4957, 2013.

M. B. Marcó, J. E. Garneau, D. Tremblay, A. Quiberoni, and S. Moineau, Characterization of two virulent phages of Lactobacillus plantarum, Appl. Environ. Microbiol, 2012.

E. Casey, J. ;. Mahony, M. O'connell-motherway, F. Bottacini, A. Cornelissen et al., Molecular characterization of three Lactobacillus delbrueckii subsp, Bulgaricus phages. Appl. Environ. Microbiol, 2014.

P. Ceyssens, V. Mesyanzhinov, N. Sykilinda, Y. Briers, B. Roucourt et al., The genome and structural proteome of YUA, a new Pseudomonas aeruginosa phage resembling m6, J. Bacteriol, vol.190, pp.1429-1435, 2008.

M. Holtappels, K. Vrancken, H. Schoofs, T. Deckers, T. Remans et al., A comparative proteome analysis reveals flagellin, chemotaxis regulated proteins and amylovoran to be involved in virulence differences between Erwinia amylovora strains, J. Proteom, vol.123, pp.54-69, 2015.

C. S. Vegge, F. K. Vogensen, S. Mc-grath, H. Neve, D. Van-sinderen et al., Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009, J. Bacteriol, vol.188, pp.55-63, 2006.

O. P. Kuipers, M. M. Beerthuyzen, P. G. De-ruyter, E. J. Luesink, and W. M. De-vos, Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction, J. Biol. Chem, vol.270, pp.27299-27304, 1995.

F. P. Douillard, M. O'connell-motherway, C. Cambillau, and D. Van-sinderen, Expanding the molecular toolbox for Lactococcus lactis: Construction of an inducible thioredoxin gene fusion expression system, Microb. Cell Fact, vol.10, 2011.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

A. Dümmler, A. Lawrence, and A. Marco, Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors, Microb. Cell Fact, vol.4, 2005.

R. M. Horton, Z. Cai, S. N. Ho, and L. R. Pease, Gene splicing by overlap extension: Tailor-made genes using the polymerase chain reaction, Biotechniques, vol.8, pp.528-535, 1990.

S. Mc-grath, H. Neve, J. F. Seegers, R. Eijlander, C. S. Vegge et al., Anatomy of a lactococcal phage tail, J. Bacteriol, vol.188, pp.3972-3982, 2006.

P. Garvey, C. Hill, and G. Fitzgerald, The lactococcal plasmid pnp40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration, Appl. Environ. Microbiol, vol.62, pp.676-679, 1996.

D. Lillehaug, An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages, J. Appl. Microbiol, vol.83, pp.85-90, 1997.

M. E. Dieterle, S. Spinelli, I. Sadovskaya, M. Piuri, and C. Cambillau, Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: A novel type of anti-receptor widespread among lactic acid bacteria phages, Mol. Microbiol, vol.104, pp.608-620, 2017.

D. Veesler, S. Blangy, M. Siponen, R. Vincentelli, C. Cambillau et al., Production and biophysical characterization of the cora transporter from Methanosarcina mazei, Anal. Biochem, vol.388, pp.115-121, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01615932

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res, vol.16, pp.10881-10890, 1988.

D. Van-sinderen, H. Karsens, J. Kok, P. Terpstra, M. H. Ruiters et al., Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t, Mol. Microbiol, vol.19, pp.1343-1355, 1996.

S. Hayes, J. Murphy, J. Mahony, G. A. Lugli, M. Ventura et al., Biocidal inactivation of Lactococcus lactis bacteriophages: Efficacy and targets of commonly used sanitizers

A. Goulet, J. Lai-kee-him, D. Veesler, I. Auzat, G. Robin et al., The opening of the SPP1 bacteriophage tail, a prevalent mechanism in gram-positive-infecting siphophages, J. Biol. Chem, vol.286, pp.25397-25405, 2011.

I. Takeuchi, K. Osada, A. H. Azam, H. Asakawa, K. Miyanaga et al., The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal Twort-like phages, Appl. Environ. Microbiol, vol.82, pp.5763-5774, 2016.

C. Bebeacua, D. Tremblay, C. Farenc, M. Chapot-chartier, I. Sadovskaya et al., Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2, J. Virol, vol.87, pp.12302-12312, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004635

A. S. Dowah and M. R. Clokie, Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target gram-positive bacteria, Biophys. Rev, vol.10, pp.535-542, 2018.