J. Fargione, J. Hill, D. Tilman, S. Polasky, and P. Hawthorne, Land clearing and the biofuel carbon debt, Science, vol.319, pp.1235-1238, 2008.

A. Eisentraut, Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries. Renewable Energy Division, International Energy Agency (IEA), 2010.

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, vol.66, pp.506-577, 2002.

C. H. Haitjema, S. P. Gilmore, J. K. Henske, K. V. Solomon, R. De-groot et al., A parts list for fungal cellulosomes revealed by comparative genomics, Nat Microbiol, vol.2, p.17087, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608502

M. St and J. Cherry, Progress and challenges in enzyme development for biomass utilization, Adv Biochem Eng Biotechnol, vol.108, pp.95-120, 2007.

B. J. Watson, H. Zhang, A. G. Longmire, Y. H. Moon, and S. W. Hutcheson, Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans, J Bacteriol, vol.191, pp.5697-5705, 2009.

Y. Li, D. C. Irwin, and D. B. Wilson, Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A, Appl Environ Microbiol, vol.73, pp.3165-3172, 2007.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

G. Vaaje-kolstad, B. Westereng, S. J. Horn, Z. Liu, H. Zhai et al., An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides, Science, vol.330, pp.219-222, 2010.

J. A. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko et al., Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61, Appl Environ Microbiol, vol.77, pp.7007-7015, 2011.

P. V. Harris, D. Welner, K. C. Mcfarland, E. Re, N. Poulsen et al., Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochemistry, vol.49, pp.3305-3316, 2010.

Z. Forsberg, A. K. Mackenzie, M. Sorlie, A. K. Rohr, R. Helland et al., Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases, Proc Natl Acad Sci U S A, vol.111, pp.8446-8451, 2014.

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol Biofuels, vol.6, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

R. Y. Stanier, The Cytophaga group: a contribution to the biology of Myxobacteria, Bacteriol Rev, vol.6, pp.143-196, 1942.

S. Winogradsky, Études sur la microbiologie du sol sur la degradation de la cellulose dans le sol, Ann Inst Pasteur, vol.43, pp.549-633, 1929.

M. J. Mcbride, W. Liu, X. Lu, Y. Zhu, and W. Zhang, The family Cytophagaceae, pp.577-593, 2014.

H. B. Hutchinson and C. J. , On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga, n sp), J Agric Sci, vol.9, pp.143-173, 1919.

Y. Zhu, H. Li, H. Zhou, C. G. Liu, and W. , Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii, Bioresour Technol, vol.101, pp.6432-6437, 2010.

L. Liu, P. Gao, G. Chen, and L. Wang, Draft genome sequence of cellulosedigesting bacterium Sporocytophaga myxococcoides PG-01, Genome Announc, vol.2, pp.1154-1168, 2014.

G. Xie, D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter et al., Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii, 2007.

, Appl Environ Microbiol, vol.73, pp.225-232

Y. Zhu, H. Zhou, Y. Bi, W. Zhang, G. Chen et al., Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii, Appl Microbiol Biotechnol, vol.97, pp.3925-3937, 2013.

C. Zhang, W. Zhang, and X. Lu, Expression and characteristics of a Ca 2 -dependent endoglucanase from Cytophaga hutchinsonii, Appl Microbiol Biotechnol, vol.99, pp.9617-9623, 2015.

E. A. Bayer, J. P. Belaich, Y. Shoham, and R. Lamed, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides, Annu Rev Microbiol, vol.58, pp.521-554, 2004.

D. B. Wilson, Three microbial strategies for plant cell wall degradation, Ann N Y Acad Sci, vol.1125, pp.289-297, 2008.

D. B. Wilson, Evidence for a novel mechanism of microbial cellulose degradation, Cellulose, vol.16, pp.723-727, 2009.

E. C. Martens, N. M. Koropatkin, T. J. Smith, and J. I. Gordon, Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm, J Biol Chem, vol.284, pp.24673-24677, 2009.

J. Larsbrink, T. E. Rogers, G. R. Hemsworth, L. S. Mckee, A. S. Tauzin et al., A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes, Nature, vol.506, pp.498-502, 2014.

J. Larsbrink, Y. Zhu, S. S. Kharade, K. J. Kwiatkowski, V. G. Eijsink et al., A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin, Biotechnol Biofuels, vol.9, 2016.

Y. Zhu, K. J. Kwiatkowski, T. Yang, S. S. Kharade, C. M. Bahr et al., Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization, 2015.

, Appl Microbiol Biotechnol, vol.99, pp.6339-6350

A. K. Sijpesteijn and G. Fahraeus, Adaptation of Sporocytophaga myxococcoides to sugars, J Gen Microbiol, vol.3, pp.224-235, 1949.

S. C. Holt and E. R. Leadbetter, Fine structure of Sporocytophaga myxococcoides, Arch Mikrobiol, vol.57, pp.199-213, 1967.

L. H. Sorensen, Decomposition of xylan by Sporocytophaga myxococcoides, Nature, vol.177, p.845, 1956.

M. J. Mcbride and Y. Zhu, Gliding motility and Por secretion system genes are widespread among members of the phylum bacteroidetes, J Bacteriol, vol.195, pp.270-278, 2013.

Y. Zhu and M. J. Mcbride, Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization, Appl Microbiol Biotechnol, vol.98, pp.763-775, 2014.

, Proteomic Analyses of Cellulolytic Soil Bacteroidetes, vol.3, pp.240-258, 2018.

P. D. Veith, N. Muhammad, N. A. Dashper, S. G. Likic, V. A. Gorasia et al., Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive posttranslational modification, and cell-surface attachment, J Proteome Res, vol.12, pp.4449-4461, 2013.

A. M. Lasica, M. Ksiazek, M. Madej, and J. Potempa, The type IX secretion system (T9SS): highlights and recent insights into its structure and function, Front Cell Infect Microbiol, vol.7, 2017.

Y. Zhu, L. Han, K. L. Hefferon, N. R. Silvaggi, D. B. Wilson et al., Periplasmic Cytophaga hutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy, Appl Environ Microbiol, vol.82, pp.4835-4845, 2016.

S. Wang, D. Zhao, X. Bai, W. Zhang, and X. Lu, Identification and characterization of a large protein essential for degradation of the crystalline region of cellulose by Cytophaga hutchinsonii, Appl Environ Microbiol, issue.1, 2017.

T. Yang, X. Bu, Q. Han, X. Wang, H. Zhou et al., A small periplasmic protein essential for Cytophaga hutchinsonii cellulose digestion, Appl Microbiol Biotechnol, vol.100, pp.1935-1944, 2016.

C. Zhang, X. Wang, W. Zhang, Y. Zhao, and X. Lu, Expression and characterization of a glucose-tolerant beta-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii, Appl Microbiol Biotechnol, vol.101, pp.1919-1926, 2017.

X. Ji, Y. Wang, C. Zhang, X. Bai, W. Zhang et al., Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii, Appl Environ Microbiol, vol.80, pp.4511-4518, 2014.

X. Bai, X. Wang, S. Wang, J. X. Guan, Z. Zhang et al., Functional studies of beta-glucosidases of Cytophaga hutchinsonii and their effects on cellulose degradation, Front Microbiol, vol.8, p.140, 2017.

Y. Zhu and M. J. Mcbride, The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii, Appl Microbiol Biotechnol, vol.101, pp.7113-7127, 2017.

S. G. Smith, V. Mahon, M. A. Lambert, and R. P. Fagan, A molecular Swiss army knife: OmpA structure, function and expression, FEMS Microbiol Lett, vol.273, pp.1-11, 2007.

M. Aguena, G. M. Ferreira, and B. Spira, Stability of the pstS transcript of Escherichia coli, Arch Microbiol, vol.191, pp.105-112, 2009.

H. Leif, V. D. Sled, T. Ohnishi, H. Weiss, and T. Friedrich, Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli, Eur J Biochem, vol.230, pp.538-548, 1995.

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol Cell Proteomics, vol.13, pp.2513-2526, 2014.

C. Zhang, Y. Wang, Z. Li, X. Zhou, W. Zhang et al., Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii, Appl Microbiol Biotechnol, vol.98, pp.6679-6687, 2014.

C. W. Forsberg, T. J. Beveridge, and A. Hellstrom, Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment, Appl Environ Microbiol, vol.42, pp.886-896, 1981.

M. C. Burnet, A. C. Dohnalkova, A. P. Neumann, M. S. Lipton, R. D. Smith et al., Evaluating models of cellulose degradation by Fibrobacter succinogenes S85, PLoS One, vol.10, 2015.

M. O. Arntzen, A. Varnai, R. I. Mackie, V. Eijsink, and P. B. Pope, Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity, Environ Microbiol, vol.19, pp.2701-2714, 2017.

W. H. Schwarz, The cellulosome and cellulose degradation by anaerobic bacteria, Appl Microbiol Biotechnol, vol.56, pp.634-649, 2001.

P. M. Alzari, H. Souchon, and R. Dominguez, The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum, Structure, vol.4, issue.96, pp.31-38, 1996.

M. S. Vincent, M. J. Canestrari, P. Leone, J. Stathopulos, B. Ize et al., Characterization of the Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core complex, J Biol Chem, vol.292, pp.3252-3261, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780705

G. Michel, T. Barbeyron, B. Kloareg, and M. Czjzek, The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity, Glycobiology, vol.19, pp.615-623, 2009.

C. Louime, M. Abazinge, J. E. Latinwo, L. Ikediobi, C. Clark et al., Molecular cloning and biochemical characterization of a family-9 endoglucanase with an unusual structure from the gliding bacteria Cytophaga hutchinsonii, Appl Biochem Biotechnol, vol.141, pp.127-138, 2007.

X. Wang, Z. Wang, X. Bai, Y. Zhao, W. Zhang et al., Deletion of a gene encoding a putative peptidoglycan-associated lipoprotein prevents degradation of the crystalline region of cellulose in Cytophaga hutchinsonii, Front Microbiol, vol.9, p.632, 2018.

M. J. Mcbride and S. A. Baker, Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga, Appl Environ Microbiol, vol.62, pp.3017-3022, 1996.

M. Thein, G. Sauer, N. Paramasivam, I. Grin, and D. Linke, Efficient subfractionation of Gram-negative bacteria for proteomics studies, J Proteome Res, vol.9, pp.6135-6147, 2010.

M. O. Arntzen, I. L. Karlskas, M. Skaugen, V. G. Eijsink, and G. Mathiesen, Proteomic investigation of the response of Enterococcus faecalis V583 when cultivated in urine, PLoS One, vol.10, 2015.

A. Shevchenko, H. Tomas, J. Havlis, J. V. Olsen, and M. Mann, In-gel digestion for mass spectrometric characterization of proteins and proteomes, Nat Protoc, vol.1, pp.2856-2860, 2006.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, pp.1794-1805, 2011.

J. A. Vizcaíno, R. G. Côté, A. Csordas, J. A. Dianes, A. Fabregat et al., The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res, vol.41, pp.1063-1069, 2012.

N. Y. Yu, J. R. Wagner, M. R. Laird, M. G. Rey, S. Lo et al., PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes, Bioinformatics, vol.26, pp.1608-1615, 2010.