J. Auclair and J. P. Accolas, Use of thermophilic lactic starters in the dairy industry, Antonie Van Leeuwenhoek, vol.49, pp.313-326, 1983.

G. Giraffa, A. Paris, L. Valcavi, M. Gatti, and E. Neviani, Genotypic and phenotypic heterogeneity of Streptococcus thermophilus strains isolated from dairy products, J Appl Microbiol, vol.91, pp.937-943, 2001.

M. Duplessis, C. M. Levesque, and S. Moineau, Characterization of Streptococcus thermophilus host range phage mutants, Appl Environ Microbiol, vol.72, pp.3036-3041, 2006.

A. Quiberoni, J. I. Stiefel, and J. A. Reinheimer, Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol, J Appl Microbiol, vol.89, pp.1059-1065, 2000.

H. Fujisawa and M. Morita, Phage DNA packaging, Genes Cells, vol.2, pp.537-545, 1997.

A. G. Binetti, D. Rio, B. Martin, M. C. Alvarez, and M. A. , Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence, Appl Environ Microbiol, vol.71, pp.6096-6103, 2005.

L. Marrec, C. Van-sinderen, D. Walsh, L. Stanley, E. Vlegels et al., Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins, Appl Environ Microbiol, vol.63, pp.3246-3253, 1997.

B. Del-rio, A. G. Binetti, M. C. Martin, M. Fernandez, A. H. Magadan et al., Multiplex PCR for the detection and identification of dairy bacteriophages in milk, Food Microbiol, vol.24, pp.75-81, 2007.

S. Mills, C. Griffin, O. O'sullivan, A. Coffey, O. E. Mcauliffe et al., A new phage on the 'Mozzarella' block: bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages, Int Dairy J, vol.21, pp.963-969, 2011.

B. Mcdonnell, J. Mahony, H. Neve, L. Hanemaaijer, J. P. Noben et al., Identification and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus, Appl Environ Microbiol, vol.82, pp.835-851, 2016.

J. Mahony, J. Oliveira, B. Collins, L. Hanemaaijer, G. A. Lugli et al., Genetic and functional characterisation of the lactococcal P335 phage-host interactions, BMC Genomics, vol.18, p.146, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802812

J. Mahony, H. Deveau, M. Grath, S. Ventura, M. Canchaya et al., Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species, FEMS Microbiol Lett, vol.261, pp.253-261, 2006.

A. K. Szczepan´skaszczepan´szczepan´ska, M. S. Hejnowicz, P. Kolakowski, and J. Bardowski, Biodiversity of Lactococcus lactis bacteriophages in Polish dairy environment, Acta Biochim Pol, vol.54, pp.151-158, 2007.

A. Raiski and N. Belyasova, Biodiversity of Lactococcus lactis bacteriophages in the Republic of Belarus, Int J Food Microbiol, vol.130, pp.1-5, 2009.

J. Murphy, B. Royer, J. Mahony, L. Hoyles, K. Heller et al., Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants, J Dairy Sci, vol.96, pp.4945-4957, 2013.

V. Suárez, S. Moineau, J. Reinheimer, and A. Quiberoni, Argentinean Lactococcus lactis bacteriophages: genetic characterization and adsorption studies, J Appl Microbiol, vol.104, pp.371-379, 2008.

D. Verreault, L. Gendron, G. M. Rousseau, M. Veillette, D. Masse et al., Detection of airborne lactococcal bacteriophages in cheese manufacturing plants, Appl Environ Microbiol, vol.77, pp.491-497, 2011.

S. Moineau, S. Pandian, and T. R. Klaenhammer, Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry, Appl Environ Microbiol, vol.59, pp.197-202, 1993.

A. Quiberoni, D. Tremblay, H. W. Ackermann, S. Moineau, and J. A. Reinheimer, Diversity of Streptococcus thermophilus phages in a largeproduction cheese factory in Argentina, J Dairy Sci, vol.89, pp.3791-3799, 2006.

P. Szymczak, T. Janzen, A. R. Neves, W. Kot, L. H. Hansen et al., Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species, Appl Environ Microbiol, vol.83, pp.2748-2764, 2017.

R. Achigar, A. H. Magadan, D. M. Tremblay, M. J. Pianzzola, and S. Moineau, Phage-host interactions in Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array, Sci Rep, vol.7, 2017.

G. M. Rousseau and S. Moineau, Evolution of Lactococcus lactis phages within a cheese factory, Appl Environ Microbiol, vol.75, pp.5336-5344, 2009.

C. Madera, C. Monjardin, and J. E. Suarez, Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies, Appl Environ Microbiol, vol.70, pp.7365-7671, 2004.

A. Quiberoni, D. M. Guglielmotti, and J. A. Reinheimer, Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides, Int J Food Microbiol, vol.84, pp.51-62, 2003.

H. Deveau, R. Barrangou, J. E. Garneau, J. Labonte, C. Fremaux et al., Phage response to CRISPRencoded resistance in Streptococcus thermophilus, J Bacteriol, vol.190, pp.1390-1400, 2008.

D. Paez-espino, S. I. Morovic, W. Stahl, B. Thomas, B. C. Barrangou et al., CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus, vol.6, pp.262-277, 2015.

P. Horvath, D. A. Romero, A. C. Coute-monvoisin, M. Richards, H. Deveau et al., Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus, J Bacteriol, vol.190, pp.1401-1412, 2008.

A. G. Binetti and J. A. Reinheimer, Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants, J Food Prot, vol.63, pp.509-515, 2000.

S. Hayes, J. Murphy, J. Mahony, G. A. Lugli, M. Ventura et al., Biocidal inactivation of Lactococcus lactis bacteriophages: efficacy and targets of commonly used sanitizers, Front Microbiol, vol.8, p.107, 2017.

N. Wagner, E. Brinks, M. Samtlebe, J. Hinrichs, Z. Atamer et al., Whey powders are a rich source and excellent storage matrix for dairy bacteriophages, Int J Food Microbiol, vol.241, pp.308-317, 2017.

J. G. Kenny, S. Mcgrath, G. F. Fitzgerald, and D. Van-sinderen, Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity, J Bacteriol, vol.186, pp.3480-3491, 2004.

S. R. Stockdale, J. Mahony, P. Courtin, M. P. Chapot-chartier, J. P. Van-pijkeren et al., The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization, J Biol Chem, vol.288, pp.5581-5590, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001577

D. M. Guglielmotti, H. Deveau, A. G. Binetti, J. A. Reinheimer, S. Moineau et al., Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina, Int J Food Microbiol, vol.136, pp.101-109, 2009.

E. Stanley, G. F. Fitzgerald, L. Marrec, C. Fayard, B. Van-sinderen et al., Sequence analysis and characterization of phi O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology, vol.143, pp.3417-3429, 1997.

S. Lucchini, F. Desiere, and H. Brussow, The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21, Virology, vol.260, pp.232-243, 1999.

D. Veesler and C. Cambillau, A common evolutionary origin for tailedbacteriophage functional modules and bacterial machineries, Microbiol Mol Biol Rev, vol.75, pp.423-433, 2011.

M. Duplessis and S. Moineau, Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages, Mol Microbiol, vol.41, pp.325-336, 2001.

C. Bebeacua, D. Tremblay, C. Farenc, M. P. Chapot-chartier, I. Sadovskaya et al., Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2, J Virol, vol.87, pp.12302-12312, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01004635

S. Spinelli, V. Campanacci, S. Blangy, S. Moineau, M. Tegoni et al., Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1, J Biol Chem, vol.281, pp.14256-14262, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066249

M. E. Dieterle, S. Spinelli, I. Sadovskaya, M. Piuri, and C. Cambillau, Evolved distal tail carbohydrate binding modules of Lactobacillus phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages, Mol Microbiol, vol.104, pp.608-620, 2017.

P. Legrand, B. Collins, S. Blangy, J. Murphy, S. Spinelli et al., The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules, vol.7, pp.1781-1796, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439078

X. Li, C. Koc, P. Kuhner, Y. D. Stierhof, B. Krismer et al., An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus, Sci Rep, vol.6, p.26455, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439069

C. Koç, G. Xia, P. Kuhner, S. Spinelli, A. Roussel et al., Structure of the host-recognition device of Staphylococcus aureus phage 11, Sci Rep, vol.6, p.27581, 2016.

F. Desiere, S. Lucchini, and H. Brussow, Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions, Virology, vol.241, pp.345-356, 1998.

B. Mcdonnell, J. Mahony, L. Hanemaaijer, H. Neve, J. P. Noben et al., Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus, Front Microbiol, vol.8, p.1754, 2017.

P. Zinno, T. Janzen, M. Bennedsen, D. Ercolini, and G. Mauriello, Characterization of Streptococcus thermophilus lytic bacteriophages from mozzarella cheese plants, Int J Food Microbiol, vol.138, pp.137-144, 2010.

H. Neve, K. I. Zenz, F. Desiere, A. Koch, K. J. Heller et al., Comparison of the lysogeny modules from the temperate Streptococcus thermophilus bacteriophages TP-J34 and Sfi21: implications for the modular theory of phage evolution, Virology, vol.241, pp.61-72, 1998.

T. N. Mavrich and G. F. Hatfull, Bacteriophage evolution differs by host, lifestyle and genome, Nat Microbiol, vol.2, p.17112, 2017.

S. Koberg, M. D. Mohamed, K. Faulhaber, H. Neve, and K. J. Heller, Identification and characterization of cis-and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34, Mol Microbiol, vol.98, pp.535-552, 2015.

S. Lucchini, F. Desiere, and H. Brussow, Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory, J Virol, vol.73, pp.8647-8656, 1999.

J. Mahony, S. R. Stockdale, B. Collins, S. Spinelli, F. P. Douillard et al., Lactococcus lactis phage TP901-1 as a model for Siphoviridae virion assembly, Bacteriophage, vol.6, p.1123795, 2016.

J. Mahony, W. Randazzo, H. Neve, L. Settanni, and D. Van-sinderen, Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface, Appl Environ Microbiol, vol.81, pp.3299-3305, 2015.

A. Chopin, A. Bolotin, A. Sorokin, S. D. Ehrlich, and M. Chopin, Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations, Nucleic Acids Res, vol.29, pp.644-651, 2001.

D. Lillehaug, An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages, J Appl Microbiol, vol.83, pp.85-90, 1997.

K. Dupont, F. K. Vogensen, and J. Josephsen, Detection of lactococcal 936-species bacteriophages in whey by magnetic capture hybridization PCR targeting a variable region of receptor-binding protein genes, J Appl Microbiol, vol.98, pp.1001-1009, 2005.

R. Staden, D. P. Judge, and J. K. Bonfield, Sequence assembly and finishing methods, Methods Biochem Anal, vol.43, pp.303-322, 2001.

D. Hyatt, G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

W. Gish and D. J. States, Identification of protein coding regions by database similarity search, Nat Genet, vol.3, pp.266-272, 1993.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

G. A. Lugli, C. Milani, L. Mancabelli, D. Van-sinderen, and M. Ventura, MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation, FEMS Microbiol Lett, vol.363, p.49, 2016.

A. Bateman, L. Coin, R. Durbin, R. D. Finn, V. Hollich et al., The Pfam protein families database, Nucleic Acids Res, vol.32, pp.138-141, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01294685

A. Marchler-bauer, S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire et al., CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Res, vol.39, pp.225-229, 2011.

J. Söding, A. Biegert, and A. N. Lupas, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.

T. M. Lowe and S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res, vol.25, pp.955-964, 1997.

K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice et al., Artemis: sequence visualization and annotation, Bioinformatics, vol.16, pp.944-945, 2000.

D. M. Tremblay and S. Moineau, Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus, Virology, vol.255, pp.63-76, 1999.

J. Murphy, F. Bottacini, J. Mahony, P. Kelleher, H. Neve et al., Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages, Sci Rep, vol.6, p.21345, 2016.

T. Deasy, J. Mahony, H. Neve, K. J. Heller, and D. Van-sinderen, Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage, J Food Prot, vol.74, pp.2157-2161, 2011.