B. Leis, A. Angelov, and W. Liebl, Screening and expression of genes from metagenomes, Adv. Appl. Microbiol, vol.83, pp.1-68, 2013.

J. Cheng, T. Romantsov, K. Engel, A. C. Doxey, D. R. Rose et al., Functional metagenomics reveals novel -galactosidases not predictable from gene sequences, PLoS One, vol.12, 2017.
DOI : 10.1371/journal.pone.0172545

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0172545&type=printable

K. Mewis, Z. Armstrong, Y. C. Song, S. A. Baldwin, S. G. Withers et al., Biomining active cellulases from a mining bioremediation system, J. Biotechnol, vol.167, pp.462-471, 2013.
DOI : 10.1016/j.jbiotec.2013.07.015

URL : https://doi.org/10.1016/j.jbiotec.2013.07.015

L. M. Coughlan, P. D. Cotter, C. Hill, and A. Alvarez-ordóñez, Biotechnological applications of functional metagenomics in the food and pharmaceutical industries, Front. Microbiol, vol.6, p.672, 2015.

M. Maruthamuthu, D. J. Jiménez, P. Stevens, and J. D. Van-elsas, A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveilsnovel thermoalkaliphilic enzymes, BMC Genomics, vol.17, p.86, 2016.

C. Medline,

J. M. Gladden, S. A. Eichorst, T. C. Hazen, B. A. Simmons, and S. W. Singer, Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrass-adapted bacterial consortia, Biotechnol. Bioeng, vol.109, pp.1140-1145, 2012.

D. J. Rooks, J. E. Mcdonald, and A. J. Mccarthy, Metagenomic approaches to the discovery of cellulases, Methods Enzymol, vol.510, pp.375-394, 2012.

T. A. Sathya and M. Khan, Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry, J. Food Sci, vol.79, pp.2149-2156, 2014.

S. Mirete, V. Nica-morgante, and J. E. González-pastor, Functional metagenomics of extreme environments, Curr. Opin. Biotechnol, vol.38, pp.143-149, 2016.
DOI : 10.1016/j.copbio.2016.01.017

J. K. Vester, M. A. Glaring, and P. Stougaard, metagenomics and culturing. Microb. Cell Fact, vol.13, 2014.

M. Decastro, E. Rodríguez-belmonte, and M. González-siso, Metagenomics of thermophiles with a focus on discovery of novel thermozymes, Front. Microbiol, vol.7, p.1521, 2016.

E. R. Vimr, K. A. Kalivoda, E. L. Deszo, and S. M. Steenbergen, Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev, vol.68, pp.132-153, 2004.

A. Varki, R. D. Cummings, J. Esko, H. Freeze, P. Stanley et al., Essentials of Glycobiology, vol.15, pp.195-209, 1999.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The Carbohydrate-Active Enzymes Database (CAZy) in 2013, Nucleic Acids Res, vol.42, 2014.

J. G. Petter and E. R. Vimr, Complete nucleotide sequence of the bacteriophage K1F tail gene encoding endo-N-acylneuraminidase (endo-N) and comparison to an endo-N homolog in bacteriophage PK1E, J. Bacteriol, vol.175, pp.4354-4363, 1993.

J. N. Varghese, W. G. Laver, and P. M. Colman, Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution, Nature, vol.303, pp.35-40, 1983.

W. P. Burmeister, B. Henrissat, C. Bosso, S. Cusack, and R. W. Ruigrok, Influenza B virus neuraminidase can synthesize its own inhibitor, Structure, vol.1, pp.19-26, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00310603

S. J. Crennell, E. F. Garman, W. G. Laver, E. R. Vimr, and G. L. Taylor, Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase, Proc. Natl. Acad. Sci. U.S.A, vol.90, pp.9852-9856, 1993.

S. Crennell, E. Garman, G. Laver, E. Vimr, T. et al., Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain, Structure, vol.2, pp.535-544, 1994.

S. Crennell, T. Takimoto, A. Portner, T. , and G. , Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nat. Struct. Biol, vol.7, pp.1068-1074, 2000.

Y. Luo, S. C. Li, M. Y. Chou, Y. T. Li, and M. Luo, The crystal structure of an intramolecular trans-sialidase with a NeuAc 233Gal specificity, Structure, vol.6, pp.521-530, 1998.

A. Buschiazzo, G. A. Tavares, O. Campetella, S. Spinelli, M. L. Cremona et al., Structural basis of sialyltransferase activity in trypanosomal sialidases, EMBO J, vol.19, pp.16-24, 2000.

A. Buschiazzo, M. F. Amaya, M. L. Cremona, A. C. Frasch, A. et al., The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis, Mol. Cell, vol.10, pp.757-768, 2002.

J. C. Wilson, D. I. Angus, V. Itzstein, and M. , ) 1 H NMR evidence that Salmonella typhimurium sialidase hydrolyzes sialosides with overall retention of configuration, J. Am. Chem. Soc, vol.117, pp.4214-4217, 1995.

A. K. Chong, M. S. Pegg, N. R. Taylor, and M. Von-itzstein, Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus, Eur. J. Biochem, vol.207, pp.335-343, 1992.

H. Friebolin, W. Baumann, G. Keilich, D. Ziegler, R. Brossmer et al., spectroscopy: a potent method for the determination of substrate specificity of sialidases, 1981.

, Hoppe Seylers Z Physiol Chem, vol.362, pp.1455-1463

Y. H. Kao, L. Lerner, and T. G. Warner, Stereoselectivity of the Chinese hamster ovary cell sialidase: sialoside hydrolysis with overall retention of configuration, Glycobiology, vol.7, pp.559-563, 1997.

T. J. Morley, L. M. Willis, C. Whitfield, W. W. Wakarchuk, and S. G. Withers, A new sialidase mechanism: bacteriophage K1F endosialidase is an inverting glycosidase, J. Biol. Chem, vol.284, pp.17404-17410, 2009.

Y. Sekiguchi, T. Yamada, S. Hanada, A. Ohashi, H. Harada et al., Anaerolinea thermophila gen. nov., sp. nov., and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain bacteria at the subphylum level, Int. J. Syst. Evol. Microbiol, vol.53, pp.1843-1851, 2003.

D. Wu, J. Raymond, M. Wu, S. Chatterji, Q. Ren et al., Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum, Nat. Methods, vol.4, pp.563-569, 2009.

W. Zhu, A. Lomsadze, and M. Borodovsky, Ab initio gene identification in metagenomic sequences, Nucleic Acids Res, vol.38, 2010.

H. Friebolin, R. Brossmer, G. Keilich, D. Ziegler, and M. Supp, 1 H-NMR-spectroscopic evidence for the release of N-acetyl--Dneuraminic acid as the first product of neuraminidase action, 1980.

. Hoppe and . Seylers, Z. Physiol. Chem, vol.361, pp.697-702

J. Chan, G. Sandhu, and A. J. Bennet, A mechanistic study of sialic acid mutarotation: Implications for mutarotase enzymes, Org. Biomol. Chem, vol.9, pp.4818-4822, 2011.

A. A. Ghate and G. M. Air, Site-directed mutagenesis of catalytic residues of influenza virus neuraminidase as an aid to drug design, Eur. J. Biochem, vol.258, pp.320-331, 1998.

J. D. Mccarter and S. G. Withers, Mechanisms of enzymatic glycoside hydrolysis, Curr. Opin. Struct. Biol, vol.4, pp.885-892, 1994.

T. V. Vuong and D. B. Wilson, Glycoside hydrolases: catalytic base/nucleophile diversity, Biotechnol. Bioeng, vol.107, pp.195-205, 2010.

M. Czjzek and G. Michel, Innovating glycoside hydrolase activity on a same structural scaffold

G. Davies and B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, vol.3, pp.853-859, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310748

E. C. Martens, N. M. Koropatkin, T. J. Smith, G. , and J. I. , Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Suslike paradigm, J. Biol. Chem, vol.284, pp.24673-24677, 2009.

M. H. Foley, D. W. Cockburn, and N. M. Koropatkin, The Sus operon: a model system for starch uptake by the human gut Bacteroidetes, Cell. Mol. Life Sci, vol.73, pp.2603-2617, 2016.

X. Wang, H. Long, D. Shen, and L. Liu, Cloning, expression, and characterization of a novel sialidase from Brevibacterium casei, Biotechnol. Appl. Biochem, vol.64, pp.195-200, 2017.

J. Guo, Y. Wang, B. Song, X. Wang, G. Yang et al., Identification and functional characterization of intracellular sialidase NeuA3 from Streptomyces avermitilis, Process Biochem, vol.50, pp.752-758, 2015.

K. H. Park, M. G. Kim, H. J. Ahn, D. H. Lee, J. H. Kim et al., Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase, Biochim. Biophys. Acta, vol.1834, pp.1510-1519, 2013.

A. Minami, S. Ishibashi, K. Ikeda, E. Ishitsubo, T. Hori et al., Catalytic preference of Salmonella typhimurium LT2 sialidase for N-acetylneuraminic acid residues over N-glycolylneuraminic acid residues, FEBS Open Bio, vol.3, pp.231-236, 2013.

N. M. Useh, J. O. Ajanusi, K. A. Esievo, and A. J. Nok, Characterization of a sialidase (neuraminidase) isolated from Clostridium chauvoei (Jakari strain), Cell Biochem. Funct, vol.24, pp.347-352, 2006.

C. Jers, Y. Guo, K. P. Kepp, and J. D. Mikkelsen, Mutants of Micromonospora viridifaciens sialidase have highly variable activities on natural and non-natural substrates, Protein Eng. Des. Sel, vol.28, pp.37-44, 2015.

J. N. Watson, V. Dookhun, T. J. Borgford, and A. J. Bennet, Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase, Biochemistry, vol.42, 2003.

J. P. Fürste, W. Pansegrau, R. Frank, H. Blöcker, P. Scholz et al., Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector, Gene, vol.48, pp.119-131, 1986.

A. Varki, R. D. Cummings, M. Aebi, N. H. Packer, P. H. Seeberger et al., Symbol nomenclature for graphical representations of glycans, Glycobiology, vol.25, pp.1323-1324, 2015.