W. C. Nierman, Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus, Nature, vol.438, pp.1151-1156, 2005.

H. J. Pel, Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513, Nat. Biotechnol, vol.88, pp.221-231, 2007.

M. Machida, Genome sequencing and analysis of Aspergillus oryzae, Nature, vol.438, pp.1157-1161, 2005.

J. E. Galagan, Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae, Nature, vol.438, pp.1105-1115, 2005.

M. Papagianni, Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling, Biotechnol. Adv, vol.25, pp.244-263, 2007.

P. J. Punt, Filamentous fungi as cell factories for heterologous protein production, Trends Biotechnol, vol.20, pp.200-206, 2002.

J. Currie, The citric acid fermentation of Aspergillus niger, J. Biol. Chem, vol.31, pp.15-37, 1917.

M. R. Andersen, Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513, vol.88

, Genome Res, vol.21, pp.885-897, 2011.

H. Wösten, K. Scoltmeijer, R. De-vries, . In-food, and . Mycology, , pp.183-196, 2007.

M. Meijer, J. A. Houbraken, S. Dalhuijsen, R. A. Samson, and R. P. De-vries, Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli, Stud. Mycol, vol.69, pp.19-30, 2011.

, List of Commercial Enzymes (Association of Manufacturers and Formulators of Enzyme Products, 2009.

M. Workman, M. R. Andersen, and J. Thykaer, Integrated approaches for assessment of cellular performance in industrially relevant filamentous fungi, Ind. Biotechnol, vol.9, pp.337-344, 2013.

S. Hong, Aspergillus luchuensis, an industrially important black Aspergillus in East Asia, PLoS ONE, vol.8, p.63769, 2013.

G. Perrone, Aspergillus niger contains the cryptic phylogenetic species A. awamori, Fungal Biol, vol.115, pp.1138-1150, 2011.

T. Futagami, Genome sequence of the white koji mold Aspergillus kawachii IFO 4308, used for brewing the Japanese distilled spirit shochu, Eukaryot. Cell, vol.10, pp.1586-1587, 2011.

M. L. Abarca, M. R. Bragulat, G. Castella, and F. J. Cabanes, Ochratoxin A production by strains of Aspergillus niger var. niger, Appl. Environ. Microbiol, vol.60, pp.2650-2652, 1994.

J. C. Frisvad, J. Smedsgaard, R. A. Samson, T. O. Larsen, and U. Thrane, Fumonisin B 2 production by Aspergillus niger, J. Agric. Food Chem, vol.55, pp.9727-9732, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00577319

J. C. Frisvad, Fumonisin and ochratoxin production in industrial Aspergillus niger strains, PLoS ONE, vol.6, p.23496, 2011.

G. Perrone, Biodiversity of Aspergillus species in some important agricultural products, Stud. Mycol, vol.59, pp.53-66, 2007.

M. Monod, Secreted proteases from pathogenic fungi, Int. J. Med. Microbiol, vol.292, pp.405-419, 2002.

Z. Jurjevi?, Two novel species of Aspergillus section Nigri from indoor air, IMA Fungus, vol.3, pp.159-173, 2012.

J. Varga, New and revisited species in Aspergillus section Nigri, Stud. Mycol, vol.69, pp.1-17, 2011.

R. A. Samson, J. A. Houbraken, A. F. Kuijpers, J. M. Frank, and J. Frisvad, New ochratoxin A or sclerotium producing species in Aspergillus section Nigri, Stud. Mycol, vol.50, pp.45-61, 2004.

R. A. Samson, Diagnostic tools to identify black aspergilli, Stud. Mycol, vol.59, pp.129-145, 2007.

R. A. Samson, Phylogeny, identification and nomenclature of the genus Aspergillus, Stud. Mycol, vol.78, pp.141-173, 2014.

C. M. Visagie, Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world, Stud. Mycol, vol.78, pp.63-139, 2014.

C. Rajendran, B. N. Muthappa, and . Saitoa, Plectomycetes. Proc. Plant Sci, vol.89, pp.185-191, 1980.

J. C. Frisvad, Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri, PLoS ONE, vol.9, p.94857, 2014.

K. F. Nielsen, J. M. Mogensen, M. Johansen, T. O. Larsen, and J. C. Frisvad, Review of secondary metabolites and mycotoxins from the Aspergillus niger group, Anal. Bioanal. Chem, vol.395, pp.1225-1242, 2009.

O. Yamada, Genome sequence of Aspergillus luchuensis NBRC 4314, DNA Res, vol.23, pp.507-515, 2016.

R. P. De-vries, Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus, Genome Biol, vol.18, p.28, 2017.

Z. Kozakiewicz, Proposals for nomina specifica conservanda and rijicienda in Aspergillus and Penicillium (Fungi), Taxon, vol.41, pp.109-113, 1992.

I. V. Grigoriev, MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Res, vol.42, pp.699-704, 2014.

I. V. Grigoriev, D. A. Martinez, and A. A. Salamov, Fungal genomic annotation, Appl. Mycol. Biotechnol, vol.6, pp.123-142, 2006.

S. Hunter, InterPro: the integrative protein signature database, Nucleic Acids Res, vol.37, pp.211-215, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01214141

A. Mitchell, The InterPro protein families database: the classification resource after 15 years, Nucleic Acids Res, vol.43, pp.213-221, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222896

A. Sørensen, P. S. Lübeck, M. Lübeck, P. J. Teller, and B. K. Ahring, ? -Glucosidases from a new Aspergillus species can substitute commercial ? -glucosidases for saccharification of lignocellulosic biomass, Can. J. Microbiol, vol.57, pp.638-650, 2011.

A. Sørensen, Identifying and characterizing the most significant ? -glucosidase of the novel species Aspergillus saccharolyticus, Can. J. Microbiol, vol.58, pp.1035-1046, 2012.

G. J. Szöll?si, A. A. Davín, E. Tannier, V. Daubin, and B. Boussau, Genome-scale phylogenetic analysis finds extensive gene transfer among fungi, Philos. Trans. R. Soc. B Biol. Sci, vol.370, p.20140335, 2015.

L. Karaffa and C. P. Kubicek, Aspergillus niger citric acid accumulation: do we understand this well working black box?, Appl. Microbiol. Biotechnol, vol.61, pp.189-196, 2003.

M. R. Andersen, M. L. Nielsen, and J. Nielsen, Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger, Mol. Syst. Biol, vol.4, p.178, 2008.

A. H. Hossain, Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger, Microb. Cell Fact, vol.15, p.130, 2016.

I. Benoit, Closely related fungi employ diverse enzymatic strategies to degrade plant biomass, Biotechnol. Biofuels, vol.8, p.107, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199391

E. M. Fox and B. J. Howlett, Secondary metabolism: regulation and role in fungal biology, Curr. Opin. Microbiol, vol.11, pp.481-487, 2008.

J. C. Nielsen, Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species, Nat. Microbiol, vol.2, p.17044, 2017.

H. Ali, A non-canonical NRPS is involved in the synthesis of fungisporin and related hydrophobic cyclic tetrapeptides in Penicillium chrysogenum, PLoS ONE, vol.9, p.98212, 2014.

M. R. Andersen, Accurate prediction of secondary metabolite gene clusters in filamentous fungi, Proc. Natl Acad. Sci. USA, vol.110, pp.99-107, 2013.

R. J. Frandsen, The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones, Mol. Microbiol, vol.61, pp.1069-1080, 2006.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

K. Katoh and D. M. Standley, MAFFT: multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

G. Talavera and J. Castresana, Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst. Biol, vol.56, pp.564-577, 2007.

J. Sambrook and D. Russell, Molecular Cloning: A Laboratory Manual, 2012.

T. M. Fulton, J. Chunwongse, and S. D. Tanksley, Microprep protocol for extraction of DNA from tomato and other herbaceous plants, Plant Mol. Biol. Rep, vol.13, pp.207-209, 1995.

D. R. Zerbino and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

S. Gnerre, High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proc. Natl Acad. Sci. USA, vol.108, pp.1513-1518, 2011.

J. Martin, Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads, BMC Genomics, vol.11, p.663, 2010.

J. Smedsgaard, Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures, J. Chromatogr. A, vol.760, pp.264-270, 1997.

A. Klitgaard, Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites, Anal. Bioanal. Chem, vol.406, pp.1933-1943, 2014.

S. Kildgaard, Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library, Mar. Drugs, vol.12, pp.3681-3705, 2014.

T. Kis-papo, Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum, Nat. Commun, vol.5, p.3745, 2014.

N. Khaldi, SMURF: genomic mapping of fungal secondary metabolite clusters, Fungal Genet. Biol, vol.47, pp.736-741, 2010.

J. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol, vol.340, pp.783-795, 2004.

C. Camacho, BLAST+ : architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.

L. Li, The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics, Nucleic Acids Res, vol.37, pp.233-238, 2014.

P. Jones, InterProScan 5: genome-scale protein function classification, Bioinformatics, vol.30, pp.1236-1240, 2014.

G. Csárdi and T. Nepusz, The igraph software package for complex network research, InterJournal Complex Syst, vol.1695, pp.1-9, 2006.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : http://europepmc.org/articles/pmc390337?pdf=render

J. Huerta-cepas, J. Dopazo, and T. Gabaldón, ETE: a python environment for tree exploration, BMC Bioinformatics, vol.11, p.24, 2010.
DOI : 10.1186/1471-2105-11-24

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-11-24

O. Emanuelsson, H. Nielsen, S. Brunak, and G. Von-heijne, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J. Mol. Biol, vol.300, pp.1005-1016, 2000.

, This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist, Nature Research wishes to improve the reproducibility of the work that we publish

, unit of measurement An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly The statistical test(s) used AND whether they are one-or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. A description of all covariates tested A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons A full description of the statistics including central tendency (e.g. means) or other basic estimates

, F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable

, Cohen's d, Pearson's r), indicating how they were calculated Clearly defined error bars State explicitly what error bars represent (e.g. SD, SE, CI) was used, this is available through GitHub: https://github.com/RoerdamAndersenLab/ For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information. Data Policy information about availability of data All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: -Accession codes, unique identifiers, Markov chain Monte Carlo settings For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes Estimates of effect sizes

, fungi) and have been deposited at DDBJ/EMBL/ GenBank under the following accessions A. aculeatinus (PSTE00000000), A. brunneoviolaceus (PSTC00000000), A. costaricaensis (PSTH00000000), A. ellipticus (PSSY00000000), A. eucalypticola (MSFU00000000), A. fijiensis PSTG00000000), A. heteromorphus (MSFL00000000), A. homomorphus (PSTJ00000000), A. ibericus (PSTI00000000), A. indologenus (PSTB00000000), A. japonicus (PSTF00000000)

, Obtaining unique materials Strains are available from the authors, from strain collections and/or from the original isolators of the material