J. H. Kuhn, Guide to the correct use of filoviral nomenclature, Curr Top Microbiol Immunol, vol.411, pp.447-60, 2017.

S. Baize, D. Pannetier, and L. Oestereich, Emergence of Zaire Ebola virus disease in Guinea, N Engl J Med, vol.371, pp.1418-1443, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011799

M. Schlee and G. Hartmann, Discriminating self from non-self in nucleic acid sensing, Nat Rev Immunol, vol.16, pp.566-80, 2016.

E. Kowalinski, T. Lunardi, and A. A. Mccarthy, Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA, Cell, vol.147, pp.423-458, 2011.

X. Jiang, L. N. Kinch, and C. A. Brautigam, Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response, Immunity, vol.36, pp.959-73, 2012.

S. C. Devarkar, C. Wang, and M. T. Miller, Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I, Proc Natl Acad Sci, vol.113, pp.596-601, 2016.

E. Uchikawa, M. Lethier, and H. Malet, Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5, Mol Cell, vol.62, pp.586-602, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01319914

B. Wu, A. Peisley, and C. Richards, Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, vol.152, pp.276-89, 2013.

K. R. Rodriguez, A. M. Bruns, and C. M. Horvath, MDA5 and LGP2 : accomplices and antagonists of antiviral signal transduction, J Virol, vol.88, pp.8194-200, 2014.

Z. Zhang, U. Ohto, and T. Shimizu, Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system, FEBS Lett, vol.591, pp.3167-81, 2017.

V. Fensterl, S. Chattopadhyay, and G. C. Sen, No love lost between viruses and interferons, Annu Rev Virol, vol.2, pp.549-72, 2015.

T. Satoh and S. Akira, Toll-like receptor signaling and its inducible proteins, Microbiol Spectr, vol.4, 2016.

B. X. Wang and E. N. Fish, The yin and yang of viruses and interferons, Trends Immunol, vol.33, pp.190-197, 2012.

A. García-sastre, Ten strategies of interferon evasion by viruses, Cell Host Microbe, vol.22, pp.176-84, 2017.

B. Martin, B. Canard, and E. Decroly, Filovirus proteins for antiviral drug discovery : structure/function bases of the replication cycle, Antiviral Res, vol.141, pp.48-61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802809

Z. Feng, M. Cerveny, Z. Yan, and B. He, The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR, J Virol, vol.81, pp.182-92, 2007.

A. Kühl, C. Banning, and A. Marzi, The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin, J Infect Dis, vol.204, issue.3, pp.850-60, 2011.

L. A. Lopez, S. J. Yang, and C. M. Exline, Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts, J Virol, vol.86, pp.5467-80, 2012.

R. S. Shabman, T. Hoenen, and A. Groseth, An upstream open reading frame modulates ebola virus polymerase translation and virus replication, PLoS Pathog, vol.9, p.1003147, 2013.

R. C. Wek, H. Y. Jiang, and T. G. Anthony, Coping with stress : eIF2 kinases and translational control, Biochem Soc Trans, vol.34, pp.7-11, 2006.

A. Page, V. A. Volchkova, and S. P. Reid, Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1, Cell Rep, vol.6, pp.1026-1062, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011795

M. R. Edwards, B. Johnson, and C. E. Mire, The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway, Cell Rep, vol.6, pp.1017-1042, 2014.

I. M. Copple, The Keap1-Nrf2 cell defense pathway : a promising therapeutic target?, Adv Pharmacol, vol.63, pp.43-79, 2012.

M. R. Edwards and C. F. Basler, Marburg Virus VP24 protein relieves suppression of the NF-?B pathway through interaction with Kelch-like ECH-Associated Protein 1, J Infect Dis, vol.212, issue.2, pp.154-163, 2015.

, RÉFÉRENCES

D. W. Leung, K. C. Prins, C. F. Basler, and G. K. Amarasinghe, Ebolavirus VP35 is a multifunctional virulence factor, Virulence, vol.1, pp.526-557, 2010.

P. Ramanan, M. R. Edwards, and R. S. Shabman, Structural basis for Marburg virus VP35-mediated immune evasion mechanisms, Proc Natl Acad Sci, vol.109, pp.20661-20667, 2012.

M. R. Edwards, G. Liu, and C. E. Mire, Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins, Cell Rep, vol.14, pp.1632-1672, 2016.

K. C. Prins, J. M. Binning, and R. S. Shabman, Basic residues within the ebolavirus VP35 protein are required for its viral polymerase cofactor function, J Virol, vol.84, pp.10581-91, 2010.

I. Messaoudi, G. K. Amarasinghe, and C. F. Basler, Filovirus pathogenesis and immune evasion : insights from Ebola virus and Marburg virus, Nat Rev Microbiol, vol.13, pp.663-76, 2015.

K. H. Kok, P. Y. Lui, and M. H. Ng, The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response, Cell Host Microbe, vol.9, pp.299-309, 2011.

K. C. Prins, W. B. Cárdenas, and C. F. Basler, Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1, J Virol, vol.83, pp.3069-77, 2009.

T. H. Chang, T. Kubota, and M. Matsuoka, Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery, PLoS Pathog, vol.5, p.1000493, 2009.

B. Martin, R. O. Volchkov, V. Decroly, and E. , Filovirus proteins for antiviral drug discovery : Structure/function of proteins involved in assembly and budding, Antiviral Res, vol.150, pp.183-92, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01922073

S. P. Reid, L. W. Leung, and A. L. Hartman, Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation, J Virol, vol.80, pp.5156-67, 2006.

S. P. Reid, C. Valmas, and O. Martinez, Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1, J Virol, vol.81, pp.13469-77, 2007.

W. Xu, M. R. Edwards, and D. M. Borek, Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1, Cell Host Microbe, vol.16, pp.187-200, 2014.

C. Valmas, M. N. Grosch, and M. Schümann, Marburg virus evades interferon responses by a mechanism distinct from ebola virus, PLoS Pathog, vol.6, p.1000721, 2010.