N. Calosci, C. N. Chi, B. Richter, C. Camilloni, A. Engstrom et al., Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins, Proc. Natl. Acad. Sci. U S A, vol.105, pp.19241-19246, 2008.

A. P. Capaldi, M. C. Shastry, C. Kleanthous, H. Roder, and S. E. Radford, Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate, Nat Struct Biol, vol.8, pp.68-72, 2001.

J. Clarke, E. Cota, S. B. Fowler, and S. J. Hamill, Folding studies of Ig-like beta-sandwich proteins suggest they share a common folding pathway, Structure, vol.7, pp.1145-1153, 1999.

C. T. Friel, A. P. Capaldi, and S. E. Radford, Structural analysis of the ratelimiting transition states in the folding of Im7 and Im9: similarities and differences in the folding of homologous proteins, J. Mol. Biol, pp.293-305, 2003.

S. Gianni, N. R. Guydosh, F. Khan, T. D. Caldas, U. Mayor et al., Unifying features in proteinfolding mechanisms, Proc. Natl. Acad. Sci. U S A, vol.100, issue.6, pp.13286-13291, 2003.

A. Zarrine-afsar, S. M. Larson, and A. R. Davidson, The family feud: do proteins with similar structures fold via the same pathway?, Curr Opin Struct Biol, vol.15, pp.42-49, 2005.

A. P. Capaldi, C. Kleanthous, and S. E. Radford, Im7 folding mechanism: misfolding on a path to the native state, Nature Structural Biology, vol.9, pp.209-216, 2002.

N. Ferguson, A. P. Capaldi, R. James, C. Kleanthous, and S. E. Radford, Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9, J Mol Biol, vol.286, pp.1597-1608, 1999.

S. Gianni, C. Travaglini_allocatelli, F. Cutruzzola, M. Brunori, M. C. Shastry et al., Parallel pathways in cytochrome c(551) folding, J Mol Biol, vol.330, issue.10, pp.1145-1152, 2003.

C. Travaglini-allocatelli, S. Gianni, and M. Brunori, A common folding mechanism in the cytochrome c family, Trends Biochem. Sci, vol.29, p.11, 2004.

C. Travaglini-allocatelli, S. Gianni, V. Morea, A. Tramontano, T. Soulimane et al., Exploring the cytochrome c folding mechanism: cytochrome c552 from thermus thermophilus folds through an onpathway intermediate, J. Biol. Chem, vol.278, p.12, 2003.

G. W. White, S. Gianni, J. G. Grossmann, P. Jemth, A. R. Fersht et al., Simulation and experiment conspire to reveal cryptic intermediates and a slide from the nucleation-condensation to framework mechanism of folding, J. Mol. Biol, vol.350, pp.757-775, 2005.

C. N. Chi, S. Gianni, N. Calosci, C. Travaglini-allocatelli, Å. Engstrom et al., A conserved folding mechanism for PDZ domains, FEBS Lett, 2007.

S. Gianni, N. Calosci, J. M. Aelen, G. W. Vuister, M. Brunori et al., Kinetic folding mechanism of PDZ2 from PTP-BL, Prot. Eng. Des. Sel, vol.18, p.15, 2005.

Y. Ivarsson, C. Travaglini-allocatelli, P. Jemth, F. Malatesta, M. Brunori et al., An on-pathway intermediate in the folding of a PDZ domain, J. Biol. Chem, vol.282, p.16, 2007.

V. P. Grantcharova, D. S. Riddle, J. V. Santiago, and D. Baker, Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain, Nat Struct Biol, vol.5, p.17, 1998.

J. C. Martinez, M. T. Pisabarro, and L. Serrano, Obligatory steps in protein folding and the conformational diversity of the transition state, Nat Struct Biol, vol.6, pp.721-729, 1998.

J. C. Martínez and L. Serrano, The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved, Nat Struct Biol, vol.6, pp.1010-1016, 1999.

R. Guerois and L. Serrano, The SH3-fold family: experimental evidence and prediction of variations in the folding pathways, J. Mol. Biol, vol.304, p.20, 2000.

D. M. Korzhnev, X. Salvatella, M. Vendruscolo, A. A. Di-nardo, A. R. Davidson et al., Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR, Nature, vol.430, pp.586-590, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02380556

J. E. Ollerenshaw, H. Kaya, H. S. Chan, and L. E. Kay, Sparsely populated folding intermediates of the Fyn SH3 domain: matching native-centric essential dynamics and experiment, Proc. Natl. Acad. Sci. U S A, vol.101, p.22, 2004.

A. Dasgupta and J. B. Udgaonkar, Four-state folding of a SH3 domain: saltinduced modulation of the stabilities of the intermediates and native state, Biochemistry, vol.51, p.23, 2012.

M. Harkiolaki, T. Tsirka, M. Lewitzky, P. C. Simister, D. Joshi et al., Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the Sh3C Domain of Grb2, Structure, vol.17, p.24, 2009.

A. Toto, D. Bonetti, A. De-simone, and S. Gianni, Understanding the mechanism of binding between Gab2 and the C terminal SH3 domain from Grb2, Oncotarget, vol.8, p.25, 2017.

J. G. Northeyk, A. A. Di-nardo, and A. R. Davidson, Hydrophobic core packing in the SH3 domain folding transition state, Nat Struct Biol, vol.9, pp.126-130, 2002.

I. A. Hubner, K. A. Edmonds, and E. I. Shakhnovich, Nucleation and the transition state of the SH3 domain, J. Mol. Biol, vol.349, p.27, 2005.

S. Piana, K. Lindorff-larsen, and D. E. Shaw, How Robust Are Protein Folding Simulations with Respect to Force Field Parameterization?, Biophys. J, vol.100, p.28, 2011.

W. L. Jorgensen, Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water, J. Am. Chem. Soc, vol.103, pp.335-340, 1981.

M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith et al., High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 20151.

G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi et al., New feathers for an old bird, Comput. Phys. Commun, vol.185, p.31, 2014.

B. Hess, A parallel linear constraint solver for molecular simulation, J. Chem. Theor. Inf, vol.4, p.32, 2008.

S. E. Jackson and A. R. Fersht, Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition, Biochemistry, 10428.

J. K. Myers, C. N. Pace, and J. M. Scholtz, Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci, vol.4, pp.2138-2148, 1995.

A. R. Fersht, A. Matouschek, and L. Serrano, The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding, J. Mol. Biol, vol.224, p.35, 1992.

A. Matouschek, J. T. Kellis, . Jr, L. Serrano, and A. R. Fersht, Mapping the transition state and pathway of protein folding by protein engineering, Nature, vol.340, p.36, 1989.

A. R. Fersht and S. Sato, Phi-value analysis and the nature of protein-folding transition states, Proc. Natl. Acad. Sci. U S A, vol.101, p.37, 2004.

C. D. Geierhaas, X. Salvatella, J. Clarke, and M. Vendruscolo, Characterisation of transition state structures for protein folding using 'high', 'medium' and 'low' {Phi}-values, Protein Eng. Des. Sel, vol.21, pp.215-222, 2008.

S. Gianni, Y. Ivarsson, A. De-simone, C. Travaglini-allocatelli, M. Brunori et al., Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain, Nat Struct Mol Biol, vol.17, p.39, 2010.

M. Vendruscolo, E. Paci, C. M. Dobson, and M. Karplus, Three key residues form a critical contact network in a protein folding transition state, Nature, vol.409, p.40, 2001.

C. Camilloni, D. Bonetti, A. Morrone, R. Giri, C. M. Dobson et al., Towards a structural biology of the hydrophobic effect in protein folding, Sci. Rep, p.41, 20166.

S. Gianni, C. Camilloni, R. Giri, A. Toto, D. Bonetti et al., Understanding the frustration arising from the competition between function, misfolding, and aggregation in a globular protein, Proc. Natl. Acad. Sci. U S A, vol.111, pp.14141-14146, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01180909

J. Gsponer, H. Hopearuoho, S. B. Whittaker, G. R. Spence, G. R. Moore et al., Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7, Proc. Natl. Acad. Sci. U S A, vol.103, p.43, 2006.

J. E. Leffler, Parameters for the description of transition states, Science, vol.117, pp.340-341, 1953.

A. R. Fersht, Relationship of Leffler (Bronsted) alpha values and protein folding Phi values to position of transition-state structures on reaction coordinates, Proc. Natl. Acad. Sci. U. S. A, vol.101, p.45, 2004.

V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich, Specific nucleus as the transition state for protein folding: evidence from the lattice model, Biochemistry, vol.33, pp.10026-10036, 1994.

A. R. Fersht, Optimization of rates of protein folding: the nucleationcondensation mechanism and its implications, Proc. Natl. Acad. Sci. U. S. A, pp.10869-10873, 199521.

K. A. Crowhurst, M. Tollinger, and J. D. Forman-kay, Cooperative interactions and a non-native buried Trp in the unfolded state of an SH3 domain, J. Mol. Biol, vol.322, p.48, 2002.

T. Kortemme, M. J. Kelly, L. E. Kay, J. Forman-kay, and L. Serrano, Similarities between the spectrin SH3 domain denatured state and its folding transition state, J. Mol. Biol, vol.297, p.49, 2000.

I. E. Sanchez and T. Kiefhaber, Hammond behavior versus ground state effects in protein folding: evidence for narrow free energy barriers and residual structure in unfolded states, J. Mol. Biol, vol.327, p.50, 2003.

F. Scaloni, S. Gianni, L. Federici, B. Falini, and M. Brunori, Folding mechanism of the C-terminal domain of nucleophosmin: residual structure in the denatured state and its pathophysiological significance, FASEB J, vol.23, p.51, 2009.

J. G. Northey, K. L. Maxwell, and A. R. Davidson, Protein folding kinetics beyond the phi value: using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state, J. Mol. Biol, vol.320, pp.389-402, 2002.

J. M. Borreguero, F. Ding, S. V. Buldyrev, H. E. Stanley, and N. V. Dokholyan, Multiple folding pathways of the SH3 domain, Biophys. J, vol.87, 2004.