C. Sawatdeenarunat, K. C. Surendra, D. Takara, H. Oechsner, and S. K. Khanal, Anaerobic digestion of lignocellulosic biomass: challenges and opportunities, Bioresour Technol, vol.178, pp.178-86, 2015.

K. Podkaminer and Z. Lin, Analyzing the impacts of a biogas-to-electricity purchase incentive on electric vehicle deployment with the MA3T vehicle choice model, 2017.

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol Mol Biol Rev, vol.66, pp.506-77, 2002.

J. Paye, A. Guseva, S. K. Hammer, E. Gjersing, M. F. Davis et al., Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment, Biotechnol Biofuels, vol.9, pp.1-13, 2016.

Y. Li, S. Y. Park, and J. Zhu, Solid-state anaerobic digestion for methane production from organic waste, Renew Sustain Energy Rev, vol.15, pp.821-827, 2011.

M. Pohl, J. Mumme, K. Heeg, and E. Nettmann, Thermo-and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solidstate (UASS) process, Bioresour Technol, vol.124, pp.321-328, 2012.

J. P. Sheets, X. Ge, and Y. Li, Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass, Bioresour Technol, vol.180, pp.296-303, 2015.

E. K. Holwerda and L. R. Lynd, Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum, Biotechnol Bioeng, vol.110, pp.2389-94, 2013.

J. Mata-alvarez, S. Macé, and P. Llabrés, Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives, Bioresour Technol, vol.74, issue.00, pp.23-30, 2000.

S. G. Pavlostathis, G. , and E. , Kinetics of anaerobic treatment: a critical review, Crit Rev Environ Control, vol.21, p.24, 1991.

S. Zahedi, D. Sales, L. I. Romero, and R. Solera, Optimisation of single-phase drythermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics, Bioresour Technol, vol.146, pp.109-126, 2013.

D. Ho, P. Jensen, and D. Batstone, Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion, Environ Sci Technol, vol.48, pp.6468-76, 2014.

I. Vanwonterghem, P. D. Jensen, K. Rabaey, and G. W. Tyson, Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters, Sci Rep, vol.5, p.8496, 2015.

Z. Liu, Thermophilic anaerobic co-digestion of swine manure with corn stover for biogas production. North Carolina State University, 2017.

J. K. Kim, B. R. Oh, Y. N. Chun, and S. W. Kim, Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J Biosci Bioeng, vol.102, pp.328-360, 2006.

M. Pohl, K. Heeg, and J. Mumme, Anaerobic digestion of wheat strawperformance of continuous solid-state digestion, Bioresour Technol, vol.146, pp.408-423, 2013.

O. Svartström, J. Alneberg, N. Terrapon, V. Lombard, I. De-bruijn et al., Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation, ISME J, vol.11, pp.2538-2551, 2017.

M. Morrison, P. B. Pope, S. E. Denman, and C. S. Mcsweeney, Plant biomass degradation by gut microbiomes: more of the same or something new?, Curr Opin Biotechnol, vol.20, pp.358-63, 2009.

S. Güllert, M. A. Fischer, D. Turaev, B. Noebauer, N. Ilmberger et al., Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies, Biotechnol Biofuels, vol.9, p.121, 2016.

J. Shi, Z. Wang, J. A. Stiverson, Z. Yu, and Y. Li, Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions, Bioresour Technol, vol.136, pp.574-81, 2013.

J. M. Gladden, M. Allgaier, C. S. Miller, T. C. Hazen, J. S. Vandergheynst et al., Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass, Appl Environ Microbiol, vol.77, pp.5804-5816, 2011.

N. Ilmberger, S. Güllert, J. Dannenberg, U. Rabausch, J. Torres et al., A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes, PLoS ONE, vol.9, p.106707, 2014.

M. K. Nobu, T. Narihiro, C. Rinke, Y. Kamagata, S. G. Tringe et al., Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor, ISME J, vol.9, pp.1710-1732, 2015.

I. Vanwonterghem, P. D. Jensen, K. Rabaey, and G. W. Tyson, Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion, Environ Microbiol, vol.18, pp.3144-58, 2016.

C. Wilkens, P. K. Busk, B. Pilgaard, W. Zhang, K. L. Nielsen et al., Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge, Biotechnol Biofuels, vol.10, pp.1-14, 2017.

R. Heyer, F. Kohrs, U. Reichl, and D. Benndorf, Metaproteomics of complex microbial communities in biogas plants, Microb Biotechnol, vol.8, pp.749-63, 2015.

L. Artzi, E. A. Bayer, and S. Moraïs, Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides, Nat Rev Microbiol, vol.15, pp.83-95, 2017.

R. A. Batista-garcía, M. R. Del-sánchez-carbente, T. P. Jackson, S. A. O'leary, N. D. Dobson et al., From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects, Biofuels Bioprod Biorefin, vol.10, pp.864-82, 2016.

N. Terrapon, V. Lombard, E. Drula, P. M. Coutinho, and B. Henrissat, The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines, pp.117-148, 2017.

R. Berlemont and A. C. Martiny, Phylogenetic distribution of potential cellulases in bacteria, Appl Environ Microbiol, vol.79, pp.1545-54, 2013.

D. Talamantes, N. Biabini, H. Dang, K. Abdoun, and R. Berlemont, Natural diversity of cellulases, xylanases, and chitinases in bacteria, Biotechnol Biofuels, vol.9, pp.1-11, 2016.

A. Weimann, Y. Trukhina, P. B. Pope, S. G. Konietzny, and A. C. Mchardy, De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes, Biotechnol Biofuels, vol.6, p.24, 2013.

S. Montella, V. Ventorino, V. Lombard, B. Henrissat, O. Pepe et al., Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses, Nat Publ Gr, vol.7, p.42623, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802808

J. S. Van-dyk and B. I. Pletschke, A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymesfactors affecting enzymes, conversion and synergy, Biotechnol Adv, vol.30, pp.1458-80, 2012.

B. Yang, Z. Dai, S. Ding, and C. E. Wyman, Enzymatic hydrolysis of cellulosic biomass, Biofuels, vol.2, pp.421-470, 2011.

Q. Xu, S. Ding, R. Brunecky, Y. J. Bomble, M. E. Himmel et al., Improving activity of minicellulosomes by integration of intra-and intermolecular synergies, Biotechnol Biofuels, vol.6, p.126, 2013.

J. Stern, S. Moraïs, R. Lamed, and E. A. Bayer, Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature, MBio, vol.7, pp.83-99, 2016.

M. E. Himmel, Q. Xu, Y. Luo, S. Ding, R. Lamed et al., Microbial enzyme systems for biomass conversion: emerging paradigms, Biofuels, vol.1, pp.323-364, 2010.

D. E. Koeck, A. Pechtl, V. V. Zverlov, and W. H. Schwarz, Genomics of cellulolytic bacteria, Curr Opin Biotechnol, vol.29, pp.171-83, 2014.

P. Dam, I. Kataeva, S. J. Yang, F. Zhou, Y. Yin et al., Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725, Nucleic Acids Res, vol.39, pp.3240-54, 2011.

A. S. Adams, M. S. Jordan, S. M. Adams, G. Suen, L. A. Goodwin et al., Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio, ISME J, vol.5, pp.1323-1354, 2011.

R. Lopez-mondejar, D. Zuhlke, T. Vetrovsky, D. Becher, K. Riedel et al., Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199, Biotechnol Biofuels, vol.9, p.104, 2016.

K. V. Solomon, C. H. Haitjema, J. K. Henske, S. P. Gilmore, D. Borges-rivera et al., Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes, Science, 2016.

S. Kolinko, Y. Wu, F. Tachea, E. Denzel, J. Hiras et al., A bacterial pioneer produces cellulase complexes that persist through community succession. Nat Microbiol, 2017.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter et al., Determination of ash in biomass laboratory analytical procedure (LAP) issue date : 7/17/2005 determination of ash in biomass laboratory analytical procedure (LAP), 2008.

D. R. Lovley, R. C. Greening, and J. G. Ferry, Rapidly growing rumen methanogenic organism that synthesizes coenzyme-M and has a high-affinity for formate, Appl Environ Microbiol, vol.48, issue.1, pp.81-88, 1984.

J. F. Saeman, J. L. Bubl, and E. E. Harris, Quantitative saccharification of wood and cellulose, Ind Eng Chem, vol.17, pp.35-42, 1945.

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter et al., Determination of structural carbohydrates and lignin in biomass, 2008.

S. Baskaran, Factors for enhanced ethanol production using Clostridium thermosaccharolyticum, 1996.

L. M. Steinberg and J. M. Regan, Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic Fen and an anaerobic digester treating municipal wastewater sludge, Appl Environ Microbiol, vol.74, pp.6663-71, 2008.

D. S. Lundberg, S. Yourstone, P. Mieczkowski, C. D. Jones, and J. L. Dangl, Practical innovations for high-throughput amplicon sequencing, Nat Methods, vol.10, pp.999-1002, 2013.

M. A. Cregger, A. M. Veach, Z. K. Yang, M. J. Crouch, R. Vilgalys et al., The Populus holobiont : dissecting the effects of plant niches and genotype on the microbiome, Microbiome, vol.6, issue.1, p.31, 2018.

C. Coman, C. M. Chiriac, M. S. Robeson, C. Ionescu, N. Dragos et al., Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania, Front Microbiol, vol.6, pp.1-14, 2015.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, issue.10, 2011.

R. C. Edgar, UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat Methods, vol.10, pp.996-1004, 2013.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nat Methods, vol.7, pp.335-341, 2010.

N. A. Bokulich, S. Subramanian, J. J. Faith, D. Gevers, J. I. Gordon et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing, Nat Methods, vol.10, pp.57-66, 2013.

Y. Vázquez-baeza, M. Pirrung, A. Gonzalez, and R. Knight, EMPeror: a tool for visualizing high-throughput microbial community data, Gigascience, vol.2, pp.1-4, 2013.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1799, 2004.

M. Kearse, R. Moir, A. Wilson, S. Stones-havas, M. Cheung et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, pp.1647-1656, 2012.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst Biol, vol.52, pp.696-704, 2003.

D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam, MEGAHIT: an ultra-fast singlenode solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics, vol.31, pp.1674-1680, 2015.

L. Pireddu, S. Leo, and G. Zanetti, Seal: a distributed short read mapping and duplicate removal tool, Bioinformatics, vol.27, pp.2159-60, 2011.

K. Mavromatis, N. N. Ivanova, I. Chen, E. Szeto, V. M. Markowitz et al., The DOE-JGI standard operating procedure for the annotations of microbial genomes, Stand Genomic Sci, vol.1, pp.63-70, 2009.

Y. Wu, B. A. Simmons, and S. W. Singer, MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets

, Bioinformatics, vol.32, pp.605-612, 2016.

D. D. Kang, J. Froula, R. Egan, and Z. Wang, MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities, PeerJ, vol.3, p.1165, 2015.

H. Lin and Y. Liao, Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes, Sci Rep, vol.6, pp.1-8, 2016.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-55, 2015.

M. Rho, H. Tang, and Y. Ye, FragGeneScan: predicting genes in short and errorprone reads, Nucleic Acids Res, vol.38, pp.1-12, 2010.

Y. Zhao, H. Tang, and Y. Ye, RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data, Bioinformatics, vol.28, pp.125-131, 2012.

Y. Wu, Y. Tang, S. G. Tringe, B. A. Simmons, and S. W. Singer, MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm, Microbiome, vol.2, p.26, 2014.

P. Worm, J. J. Koehorst, M. Visser, V. T. Sedano-núñez, P. J. Schaap et al., A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities, Biochim Biophys Acta Bioenergy, vol.1837, pp.2004-2020, 2014.

R. Caspi, R. Billington, L. Ferrer, H. Foerster, C. A. Fulcher et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res, vol.36, pp.623-654, 2008.

M. Richter, R. Rosselló-móra, O. Glöckner, F. Peplies, and J. , JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison, Bioinformatics, vol.32, pp.929-960, 2016.

M. Winkler, P. Boets, B. Hahne, P. Goethals, and E. Volcke, Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration, PLoS ONE, vol.12, 2017.

C. T. Skennerton, M. F. Haroon, A. Briegel, J. Shi, G. J. Jensen et al., Phylogenomic analysis of Candidatus 'Izimaplasma' species: free-living representatives from a Tenericutes clade found in methane seeps, ISME J, vol.10, pp.2679-92, 2016.

J. A. Izquierdo, S. Pattathil, A. Guseva, M. G. Hahn, and L. R. Lynd, Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material, Biotechnol Biofuels, vol.7, p.136, 2014.

J. A. Izquierdo, L. Goodwin, K. W. Davenport, H. Teshima, D. Bruce et al., Complete genome sequence of Clostridium clariflavum DSM 19732, Stand Genomic Sci, vol.6, pp.104-119, 2012.

H. Shiratori, K. Sasaya, H. Ohiwa, H. Ikeno, S. Ayame et al., Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., ? fast, convenient online submission research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research

, Ready to submit your research ? Choose BMC and benefit from: moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge, Int J Syst Evol Microbiol, vol.59, pp.1764-70, 2009.

W. B. Hania, A. Bouanane-darenfed, J. Cayol, B. Ollivier, and M. Fardeau, Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendation of the genus Acetomicrobium, Int J Syst Evol Microbiol, vol.66, pp.1506-1515, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438759

B. M. Ollivier, R. A. Mah, T. J. Ferguson, D. R. Boone, J. L. Garcia et al., Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment, Int J Syst Bacteriol, vol.35, pp.425-433, 1985.

F. Lü, A. Bize, A. Guillot, V. Monnet, C. Madigou et al., Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity, ISME J, vol.8, pp.88-102, 2014.

A. Schnürer, B. Schink, and B. H. Svensson, Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium, Int J Syst Evol Microbiol, vol.46, pp.1145-52, 1996.

J. A. Izquierdo, M. V. Sizova, and L. R. Lynd, Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost, Appl Environ Microbiol, vol.76, pp.3545-53, 2010.

B. Dassa, I. Borovok, V. Ruimy-israeli, R. Lamed, H. J. Flint et al., Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains, PLoS ONE, vol.9, p.99221, 2014.

N. Krakat, A. Westphal, S. Schmidt, and P. Scherer, Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics, Appl Environ Microbiol, vol.76, pp.1842-50, 2010.

T. Hori, D. Sasaki, S. Haruta, T. Shigematsu, Y. Ueno et al., Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling, Microbiology, vol.157, pp.1980-1989, 2011.

L. Levén, A. Eriksson, and A. Schnürer, Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste, FEMS Microbiol Ecol, vol.59, pp.683-93, 2007.

A. Schmidt, N. Müller, B. Schink, and D. Schleheck, A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei, PLoS ONE, vol.8, p.56905, 2013.

A. Nizami, N. E. Korres, and J. D. Murphy, Review of the integrated process for the production of grass biomethane, Environ Sci Technol, vol.43, pp.8496-508, 2009.

I. M. Nasir, T. Ghazi, and R. Omar, Production of biogas from solid organic wastes through anaerobic digestion: a review, Appl Microbiol Biotechnol, vol.95, pp.321-330, 2012.

Z. Fan and L. R. Lynd, Conversion of paper sludge to ethanol. I: impact of feeding frequency and mixing energy characterization, Bioprocess Biosyst Eng, vol.30, pp.27-34, 2007.

T. Yilmaz, A. Yuceer, and M. Basibuyuk, A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater, Bioresour Technol, vol.99, pp.156-63, 2008.

P. J. Van-soest, The uniformity and nutritive availability of cellulose, Fed Proc, vol.32, pp.1804-1812, 1973.

T. L. Richard, The effect of lignin on biodegradability. Cornell Waste Management Institute, 1996.

X. Shao, J. M. Guseva, A. Liu, C. Balan, V. Hogsett et al., Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass, Bioresour Technol, vol.102, pp.8040-8045, 2011.

X. Shao, K. Dimarco, T. L. Richard, and L. R. Lynd, Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue, Biotechnol Biofuels, vol.8, p.35, 2015.

I. Maus, D. E. Koeck, K. G. Cibis, S. Hahnke, Y. S. Kim et al., Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates, Biotechnol Biofuels, vol.9, pp.1-28, 2016.

C. L. Chen, H. Macarie, I. Ramirez, A. Olmos, S. L. Ong et al., Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate, Microbiology, vol.150, pp.3429-3469, 2004.

W. B. Hania, R. Godbane, A. Postec, M. Hamdi, B. Ollivier et al., Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester, Int J Syst Evol Microbiol, vol.62, pp.1377-82, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739989

I. Maus, K. G. Cibis, A. Bremges, Y. Stolze, D. Wibberg et al., Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment, J Biotechnol, vol.232, pp.50-60, 2016.

S. E. Blumer-schuette, R. J. Giannone, J. V. Zurawski, I. Ozdemir, Q. Ma et al., Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass, J Bacteriol, vol.194, pp.4015-4043, 2012.

R. Seshadri, S. C. Leahy, G. T. Attwood, K. H. Teh, S. C. Lambie et al., Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection, Nat Biotechnol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094598