J. M. Lawther, R. Sun, and W. B. Banks, Extraction, fractionation, and characterization of structural polysaccharides from wheat straw, J Agric Food Chem, vol.43, pp.667-675, 1995.

R. Sun, J. M. Lawther, and W. B. Banks, Influence of alkaline pre-treatments on the cell wall components of wheat straw, Ind Crops Prod, vol.4, pp.127-145, 1995.

R. Sun, J. M. Fang, P. Rowlands, and J. Bolton, Physicochemical and thermal characterization of wheat straw hemicelluloses and cellulose, J Agric Food Chem, vol.46, pp.2804-2809, 1998.

J. B. Kristensen, L. G. Thygesen, C. Felby, H. Jørgensen, and T. Elder, Cell-wall structural changes in wheat straw pretreated for bioethanol production, Biotechnol Biofuels, vol.1, pp.141-146, 2008.

R. Sun, J. M. Lawther, and W. B. Banks, Fractional and structural characterization of wheat straw hemicelluloses, Carbohydr Polym, vol.29, pp.325-331, 1996.

X. F. Sun, R. Sun, P. Fowler, and M. S. Baird, Extraction and characterization of original lignin and hemicelluloses from wheat straw, J Agric Food Chem, vol.53, p.15712990, 2005.

R. Sun, X. F. Sun, S. Q. Wang, W. Zhu, and X. Y. Wang, Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood, Ind Crops Prod, vol.15, pp.179-188, 2002.

G. B. Fincher, Revolutionary Times in our understanding of cell wall biosynthesis and remodeling in the grasses, Plant Physiol, vol.149, p.19126692, 2009.

J. C. Del-río, J. Rencoret, P. Prinsen, A. Martínez, J. Ralph et al., Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods, J Agric Food Chem, vol.60, p.22607527, 2012.

J. Gerrits, The cultivation of mushrooms. Darlington Mushroom Laboratories, Nutrition and compost, pp.29-72, 1988.

M. A. Kabel, E. Jurak, M. R. Mäkelä, and R. P. De-vries, Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation, Appl Microbiol Biotechnol, vol.101, p.28466110, 2017.

E. Jurak, M. A. Kabel, and H. Gruppen, Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus, Carbohydr Polym, vol.101, p.24299775, 2014.

E. Jurak, How mushrooms feed on compost: Conversion of carbohydrates and lignin in industrial wheat straw based compost enabling the growth of Agaricus bisporus. Dissertation, Wageningen University, 2015.

E. Jurak, A. M. Punt, W. Arts, M. A. Kabel, and H. Gruppen, Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost, PLoS One, vol.10, pp.1-16, 2015.

G. Straatsma, T. W. Olijnsma, J. Gerrits, J. Amsing, H. Op-den-camp et al., Inoculation of Scytalidium thermophilum in button mushroom compost and its effect on yield, Appl Environ Microbiol, vol.60, p.16349366, 1994.

G. Straatsma and R. A. Samson, Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost, Mycol Res, vol.97, pp.321-328, 1993.

R. Ross and P. Harris, The significance of thermophilic fungi in mushroom compost preparation, Sci Hortic (Amsterdam), vol.20, pp.61-70, 1983.

E. Jurak, A. Patyshakuliyeva, D. Vries, R. P. Gruppen, H. Kabel et al., Compost grown Agaricus bisporus lacks the ability to degrade and consume highly substituted xylan fragments, PLoS One, p.26237450, 2015.

E. Jurak, A. Patyshakuliyeva, D. Kapsokalyvas, L. Xing, M. Van-zandvoort et al., Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus, Carbohydr Polym, vol.132, pp.359-368, 2015.

E. Morin, A. Kohler, A. R. Baker, M. Foulongne-oriol, V. Lombard et al., Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche, Proc Natl Acad Sci, vol.109, p.23045686, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267851

P. M. Martínez, M. M. Appeldoorn, H. Gruppen, and M. A. Kabel, The two Rasamsonia emersonii ?-glucuronidases, Re GH67 and Re GH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides, Biotechn biofuels, 2016.

J. Puls, O. Schmidt, and C. Granzow, ?-Glucuronidase in two microbial xylanolytic systems, Enzyme Microb Technol, vol.9, pp.83-88, 1987.

A. Patyshakuliyeva, H. Post, M. Zhou, E. Jurak, A. Heck et al., Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle, Environ Microbiol, vol.17, p.26118398, 2015.

S. Koutaniemi and M. Tenkanen, Action of three GH51 and one GH54 ?-arabinofuranosidases on internally and terminally located arabinofuranosyl branches, J Biotechnol, vol.229, p.27142490, 2016.

E. Jurak, A. Patyshakuliyeva, D. Kapsokalyvas, L. Xing, M. A. Van-zandvoort et al., Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus, Carbohydr Polym, vol.132, p.26256360, 2015.

J. F. Pelkmans, A. M. Vos, K. Scholtmeijer, E. Hendrix, J. Baars et al., The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus, Appl Microbiol Biotechnol, vol.100, p.27207144, 2016.

X. Chen, M. Stone, C. Schlagnhaufer, and C. P. Romaine, A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus, Appl Environ Microbiol, vol.66, p.11010906, 2000.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, p.2440339, 1987.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT Method, Methods, vol.25, p.11846609, 2001.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT method, Nat Protoc, vol.3, p.18546601, 2008.

F. Kormelink, M. Searle-van-leeuwen, T. M. Wood, and A. Voragen, Purification and characterization of three endo-(1,4)-?-xylanases and one ?-xylosidase from Aspergillus awamori, J Biotechnol, vol.27, pp.249-265, 1993.

H. N. Englyst and J. H. Cummings, Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst, vol.109, pp.937-942, 1984.

J. F. Thibault, Automatisation du dosage des substances pectiques par la methode au meta-hydroxydiphenyl, Lebensm-Wiss Technol, vol.12, pp.247-251, 1979.

K. Mewis, N. Lenfant, V. Lombard, and B. Henrissat, Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization, Appl Environ Microbiol, vol.82, p.26729713, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439073

J. Saboti?, R. A. Ohm, and M. Künzler, Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies, Appl Microbiol Biotechnol, vol.100, p.26521246, 2016.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, p.9254694, 1997.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2013.

G. Straatsma, J. Gerrits, M. Augustijn, H. Op-den-camp, G. D. Vogels et al., Population dynamics of Scytalidium thermophilum in mushroom compost and stimulatory effects on growth rate and yield of Agaricus bisporus, Microbiology, vol.135, pp.751-759, 1989.

H. R. Sørensen, C. T. Jørgensen, C. H. Hansen, C. I. Jørgensen, S. Pedersen et al., A novel GH43 ?-Larabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 ?-L-arabinofuranosidase on wheat arabinoxylan, Appl Microbiol Biotechnol, vol.73, p.16944135, 2006.

H. Ferré, A. Broberg, J. Ø. Duus, and K. K. Thomsen, A novel type of arabinoxylan arabinofuranohydrolase isolated from germinated barley, Eur J Biochem, vol.267, p.11054116, 2000.

S. Lagaert, A. Pollet, J. A. Delcour, R. Lavigne, C. M. Courtin et al., Substrate specificity of three recombinant ?-L-arabinofuranosidase from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides, Biochem Biophys Res Commun, vol.402, p.20971079, 2010.

V. Borsenberger, E. Dornez, M. Desrousseaux, S. Massou, M. Tenkanen et al., A 1H NMR study of the specificity of ?-L-arabinofuranosidase on natural and unnatural substrates, Biochim Biophys Acta, vol.1840, p.25016078, 2014.

J. H. Grabber, R. D. Hatfield, and J. Ralph, Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls, J Sci Food Agric, vol.77, pp.193-200, 1998.

J. H. Grabber, D. R. Mertens, H. Kim, C. Funk, F. Lu et al., Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition, J Sci Food Agric, vol.89, pp.122-129, 2009.

A. M. Vos, E. Jurak, J. F. Pelkmans, K. Herman, G. Pels et al., Wös-ten HAB. H 2 O 2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost, 2017.

J. Baars, A. Sonnenberg, and J. De-visser, Blok C Input-output Fase III, 2013.

K. Van-laere, C. Voragen, T. Kroef, L. Van-den-broek, G. Beldman et al., Purification and mode of action of two different arabinoxylan arabinofuranohydrolases from Bifidobacterium adolescentis DSM, Appl Microbiol Biotechnol, vol.51, pp.606-613, 1999.