J. E. Garneau, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, pp.67-71, 2010.

R. Barrangou, CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

S. J. Brouns, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, vol.321, pp.960-964, 2008.

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

H. Deveau, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol, vol.190, pp.1390-1400, 2008.

J. Bondy-denomy, A. Pawluk, K. L. Maxwell, and A. R. Davidson, Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system, Nature, vol.493, pp.429-432, 2013.

J. Shin, Disabling Cas9 by an anti-CRISPR DNA mimic, Sci. Adv, vol.3, p.1701620, 2017.

J. Bondy-denomy, Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins, Nature, vol.526, pp.136-139, 2015.

A. Pawluk, Naturally occurring off-switches for CRISPR-Cas9, Cell, vol.167, pp.1-10, 2016.

A. Pawluk, J. Bondy-denomy, V. H. Cheung, K. L. Maxwell, and A. R. Davidson, A new group of phage anti-CRISPR genes inhibits the type I-E CRISPRCas system of Pseudomonas aeruginosa, vol.5, pp.896-910, 2014.

A. Pawluk, Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nat. Microbiol, vol.1, p.16085, 2016.

F. He, Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity, Nat. Microbiol, vol.3, pp.461-469, 2018.

S. Chowdhury, Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex, Cell, vol.169, p.11, 2017.

K. L. Maxwell, The solution structure of an anti-CRISPR protein, Nat. Commun, vol.7, p.13134, 2016.

L. B. Harrington, A broad-spectrum inhibitor of CRISPR-Cas9, Cell, vol.170, p.15, 2017.

T. W. Guo, Cryo-EM Structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex, Cell, vol.171, pp.414-426, 2017.

R. Peng, Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures, Cell Res, vol.27, pp.853-864, 2017.

X. Wang, Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3, Nat. Struct. Mol. Biol, vol.23, pp.868-870, 2016.

D. Ka, S. Y. An, J. Suh, and E. Bae, Crystal structure of an anti-CRISPR protein, AcrIIA1, Nucleic Acids Res, vol.46, pp.485-492, 2017.

K. S. Makarova, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol, vol.13, pp.722-736, 2015.

K. S. Makarova, F. Zhang, and E. V. Koonin, SnapShot: class 2 CRISPR-Cas systems, Cell, vol.168, p.1, 2017.

A. Pawluk, A. R. Davidson, and K. L. Maxwell, Anti-CRISPR: discovery, mechanism and function, Nat. Rev. Microbiol, vol.16, pp.12-17, 2018.

B. J. Rauch, Inhibition of CRISPR-Cas9 with bacteriophage proteins, Cell, vol.168, p.10, 2017.

A. P. Hynes, An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9, Nat. Microbiol, vol.2, pp.1374-1380, 2017.

L. Cong, Multiplex genome engineering using CRISPR/Cas system, Science, vol.339, pp.819-824, 2013.

D. Dong, Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein, Nature, vol.546, pp.436-439, 2017.

H. Yang and D. J. Patel, Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9, Mol. Cell, vol.67, p.5, 2017.

A. P. Hynes, Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings, Nat. Protoc, vol.12, pp.547-565, 2017.

B. Mcdonnell, Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus, Front. Microbiol, vol.8, p.1754, 2017.

A. P. Hynes, M. Villion, and S. Moineau, Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages, Nat. Commun, vol.5, p.4399, 2014.

A. P. Hynes, S. J. Labrie, and S. Moineau, Programming native CRISPR arrays for the generation of targeted immunity, vol.7, pp.202-00216, 2016.

L. Marrec and C. , Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins, Appl. Env. Microbiol, vol.63, pp.3246-3253, 1997.

B. Mcdonnell, Identification and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus, Appl. Env. Microbiol, vol.82, pp.5153-5165, 2016.

P. Szymczak, Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species, Appl. Env. Microbiol, vol.83, pp.2748-2764, 2017.

L. Holm and P. Rosenström, Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-549, 2010.

J. E. Mcgeehan, N. J. Ball, S. D. Streeter, S. J. Thresh, and G. G. Kneale, Recognition of dual symmetry by the controller protein C.Esp1396I based on the structure of the transcriptional activation complex, Nucleic Acids Res, vol.40, pp.4158-4167, 2012.

A. H. Magadán, M. Dupuis, M. Villion, and S. Moineau, Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system, PLoS ONE, vol.7, p.40913, 2012.

D. M. Tremblay and S. Moineau, Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus, Virology, vol.255, pp.63-76, 1999.

M. Müller, Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome, Mol. Ther, vol.24, pp.636-644, 2016.

D. Y. Guschin, A rapid and general assay for monitoring endogenous gene modification, Methods Mol. Biol, vol.649, pp.247-256, 2010.

R. Marshall, Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system, Mol. Cell, vol.69, pp.146-157, 2018.

S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, and J. Corbeil, Ray Meta: scalable de novo metagenome assembly and profiling, Genome Biol, vol.13, p.122, 2012.

A. V. Lukashin, M. Borodovsky, and . Genemark, hmm: new solutions for gene finding, Nucleic Acids Res, vol.26, pp.1107-1115, 1998.

I. T. Rombel, K. F. Sykes, S. Rayner, and S. A. Johnston, ORF-FINDER: a vector for high-throughput gene identification, Gene, vol.282, pp.33-41, 2002.

H. Holo and I. F. Nes, High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media, Appl Env. Microbiol, vol.55, pp.3119-3123, 1989.

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

I. B. Dodd and J. B. Egan, Improved detection of helix-turn-helix DNA-binding motifs in protein sequences, Nucleic Acids Res, vol.18, pp.5019-5026, 1990.

V. Alva, S. Nam, J. Söding, and A. N. Lupas, The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis, Nucleic Acids Res, vol.44, pp.410-415, 2016.

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Res, vol.43, pp.389-394, 2015.

A. Lartigue, Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L, Acta Crystallogr. D. Biol. Crystallogr, vol.59, pp.919-921, 2003.

W. X. Kabsch, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.125-132, 2010.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr. D. Biol. Crystallogr, vol.67, pp.235-242, 2011.

K. Cowtan, The Buccaneer software for automated model building, Acta Crystallogr. D. Biol. Crystallogr, vol.62, pp.1002-1011, 2006.

E. Blanc, Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT, Acta Crystallogr. D. Biol. Crystallogr, vol.60, pp.2210-2221, 2004.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.486-501, 2010.

M. Dalvai, A scalable genome-editing-based approach for mapping multiprotein complexes in human cells, Cell Rep, vol.13, pp.621-633, 2015.

B. P. Kleinstiver, Engineered CRISPR-Cas9 nucleases with altered PAM specificities, Nature, vol.523, pp.481-485, 2015.

B. P. Kleinstiver, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, vol.529, pp.290-295, 2016.