H. C. Godfray, Food security: the challenge of feeding 9 billion people, Science, vol.327, pp.812-818, 2010.

M. C. Eisler, Agriculture: steps to sustainable livestock, Nature, vol.507, pp.32-34, 2014.

M. Herrero, Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems, Proc. Natl. Acad. Sci. USA, vol.110, pp.20888-20893, 2013.

D. P. Morgavi, W. J. Kelly, P. H. Janssen, and G. T. Attwood, Rumen microbial (meta)genomics and its application to ruminant production, Animal, vol.7, pp.184-201, 2013.

M. Hess, Metagenomic discovery of biomass-degrading genes and genomes from cow rumen, Science, vol.331, pp.463-467, 2011.

A. Reisinger and H. Clark, How much do direct livestock emissions actually contribute to global warming? Glob, Change Biol, 2017.

E. Wollenberg, Reducing emissions from agriculture to meet the 2 °C target, Glob. Change Biol, vol.22, pp.3859-3864, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01605012

M. P. Bryant, Bacterial species of the rumen, Bacteriol. Rev, vol.23, pp.125-153, 1959.

R. E. Hungate, The Rumen and Its Microbes, 1966.

C. J. Creevey, W. J. Kelly, G. Henderson, and S. C. Leahy, Determining the culturability of the rumen bacterial microbiome, Microb. Biotechnol, vol.7, pp.467-479, 2014.

K. E. Nelson, A catalog of reference genomes from the human microbiome, Science, vol.328, pp.994-999, 2010.

S. Mukherjee, 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life, Nat. Biotechnol, vol.35, pp.676-683, 2017.

M. J. Blaser, Toward a predictive understanding of Earth's microbiomes to address 21 st century challenges, MBio, vol.7, pp.714-00716, 2016.

N. C. Kyrpides, E. A. Eloe-fadrosh, and N. N. Ivanova, Microbiome data science: understanding our microbial planet, Trends Microbiol, vol.24, pp.425-427, 2016.

S. Noel, Cultivation and Community Composition Analysis of Plant-Adherent Rumen Bacteria PhD thesis, N.Z, 2013.

H. P. Browne, Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation, Nature, vol.533, pp.543-546, 2016.

I. Lagkouvardos, The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota, Nat. Microbiol, vol.1, p.16131, 2016.

S. Mukherjee, Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements, Nucleic Acids Res, vol.45, issue.1, pp.446-456, 2017.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-1055, 2015.

P. S. Chain, Genome project standards in a new era of sequencing, Science, vol.326, pp.236-237, 2009.

M. Kim, M. Morrison, and Z. Yu, Status of the phylogenetic diversity census of ruminal microbiomes, FEMS Microbiol. Ecol, vol.76, pp.49-63, 2011.

G. Henderson, Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range, Sci. Rep, vol.5, p.14567, 2015.

D. L. Harmon, R. M. Yamka, and N. A. Elam, Factors affecting intestinal starch digestion in ruminants: A review. Can, J. Anim. Sci, vol.84, pp.309-318, 2004.

Y. Wen and D. M. Irwin, Mosaic evolution of ruminant stomach lysozyme genes, Mol. Phylogenet. Evol, vol.13, pp.474-482, 1999.

M. G. Domínguez-bello, Resistance of rumen bacteria murein to bovine gastric lysozyme, BMC Ecol, vol.4, p.7, 2004.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

N. Terrapon, PULDB: the expanded database of Polysaccharide Utilization Loci, Nucleic Acids Res, vol.46, issue.1, pp.677-683, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094620

D. Ndeh, Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, vol.544, pp.65-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

C. Ang, Global survey of the bovine salivary proteome: integrating multidimensional prefractionation, targeted, and glycocapture strategies, J. Proteome Res, vol.10, pp.5059-5069, 2011.

L. Artzi, E. A. Bayer, and S. Moraïs, Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides, Nat. Rev. Microbiol, vol.15, pp.83-95, 2017.

I. Mukhopadhya, Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii, Environ. Microbiol, vol.20, pp.324-336, 2018.

I. A. Chen, IMG/M: integrated genome and metagenome comparative data analysis system, Nucleic Acids Res, vol.45, issue.1, pp.507-516, 2017.

R. Albalat and C. Cañestro, Evolution by gene loss, Nat. Rev. Genet, vol.17, pp.379-391, 2016.

J. R. Knapp, G. L. Laur, P. A. Vadas, W. P. Weiss, and J. M. Tricarico, Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions, J. Dairy Sci, vol.97, pp.3231-3261, 2014.

S. A. Shmakov, The CRISPR spacer space is dominated by sequences from species-specific mobilomes, MBio, vol.8, pp.1397-1414, 2017.

D. Paez-espino, Uncovering Earth's virome, Nature, vol.536, pp.425-430, 2016.

E. Jami and I. Mizrahi, Composition and similarity of bovine rumen microbiota across individual animals, PLoS One, vol.7, p.33306, 2012.

F. S. Lima, Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows, Appl. Environ. Microbiol, vol.81, pp.1327-1337, 2015.

J. Kamke, Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation, vol.4, p.56, 2016.

M. Kim and J. E. Wells, A meta-analysis of bacterial diversity in the feces of cattle, Curr. Microbiol, vol.72, pp.145-151, 2016.

J. Dolfing and J. C. Gottschal, in Gastrointestinal Microbiology, vol.2, pp.373-433, 1997.

J. R. Aschenbach, N. B. Kristensen, S. S. Donkin, H. M. Hammon, and G. B. Penner, Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough, IUBMB Life, vol.62, pp.869-877, 2010.

D. Gille and A. Schmid, Vitamin B 12 in meat and dairy products, Nutr. Rev, vol.73, pp.106-115, 2015.

P. H. Degnan, M. E. Taga, and A. L. Goodman, Vitamin B 12 as a modulator of gut microbial ecology, Cell Metab, vol.20, pp.769-778, 2014.

E. A. Hutchison, D. A. Miller, and E. R. Angert, Sporulation in bacteria: beyond the standard model. Microbiol. Spectr. 2 TBS-0013, 2012.

R. Roehe, Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance, PLoS Genet, vol.12, p.1005846, 2016.

G. Sasson, Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow's capacity to harvest energy from its feed, MBio, vol.8, pp.703-00717, 2017.

S. Nayfach, B. Rodriguez-mueller, N. Garud, and K. S. Pollard, An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography, Genome Res, vol.26, pp.1612-1625, 2016.

K. V. Solomon, Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes, Science, vol.351, pp.1192-1195, 2016.

E. M. Ross, S. Petrovski, P. J. Moate, and B. J. Hayes, Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle, BMC Microbiol, vol.13, p.242, 2013.

H. Brüssow, Biome engineering-2020, Microb. Biotechnol, vol.9, pp.553-563, 2016.

T. A. Mcallister, Ruminant Nutrition Symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis, J. Anim. Sci, vol.93, pp.1431-1449, 2015.

J. L. Firkins and Z. Yu, Ruminant Nutrition Symposium: how to use data on the rumen microbiome to improve our understanding of ruminant nutrition, J. Anim. Sci, vol.93, pp.1450-1470, 2015.

P. J. Weimer, Cellulose degradation by ruminal microorganisms, Crit. Rev. Biotechnol, vol.12, pp.189-223, 1992.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, issue.1, pp.242-245, 2016.

K. Mavromatis, The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation, PLoS One, vol.7, p.48837, 2012.

J. Eid, Real-time DNA sequencing from single polymerase molecules, Science, vol.323, pp.133-138, 2009.

D. R. Zerbino and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

J. Butler, ALLPATHS: de novo assembly of whole-genome shotgun microreads, Genome Res, vol.18, pp.810-820, 2008.

C. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, vol.10, pp.563-569, 2013.

M. Huntemann, The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4), Stand. Genomic Sci, vol.11, p.17, 2016.

H. J. Tripp, Toward a standard in structural genome annotation for prokaryotes, Stand. Genomic Sci, vol.10, p.45, 2015.

D. Hyatt, Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

A. Pati, GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes, Nat. Methods, vol.7, pp.455-457, 2010.

W. Li, L. Fu, B. Niu, S. Wu, and J. Wooley, Ultrafast clustering algorithms for metagenomic sequence analysis, Brief. Bioinform, vol.13, pp.656-668, 2012.

J. R. Cole, Ribosomal Database Project: data and tools for high throughput rRNA analysis, Nucleic Acids Res, vol.42, pp.633-642, 2014.

M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, The Jalview Java alignment editor, Bioinformatics, vol.20, pp.426-427, 2004.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2--approximately maximum-likelihood trees for large alignments, PLoS One, vol.5, p.9490, 2010.

E. A. Eloe-fadrosh, Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs, Nat. Commun, vol.7, p.10476, 2016.

J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions, Nucleic Acids Res, vol.41, p.121, 2013.

A. E. Darling, PhyloSift: phylogenetic analysis of genomes and metagenomes, PeerJ, vol.2, p.243, 2014.

T. Weber, antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res, vol.43, issue.1, pp.237-243, 2015.

D. Paez-espino, IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses, Nucleic Acids Res, vol.45, issue.1, pp.457-465, 2017.

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

R. A. Edwards, K. Mcnair, K. Faust, J. Raes, and B. E. Dutilh, Computational approaches to predict bacteriophage-host relationships, FEMS Microbiol. Rev, vol.40, pp.258-272, 2016.

S. M. Kie?basa, R. Wan, K. Sato, P. Horton, and M. C. Frith, Adaptive seeds tame genomic sequence comparison, Genome Res, vol.21, pp.487-493, 2011.

C. Luo, L. M. Rodriguez-r, and K. T. Konstantinidis, MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences, Nucleic Acids Res, vol.42, p.73, 2014.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, pp.589-595, 2010.

J. R. White, N. Nagarajan, and M. Pop, Statistical methods for detecting differentially abundant features in clinical metagenomic samples, PLOS Comput. Biol, vol.5, p.1000352, 2009.

S. Nurk, D. Meleshko, A. Korobeynikov, and P. Pevzner, A. metaSPAdes: a new versatile metagenomic assembler, Genome Res, vol.27, pp.824-834, 2017.