E. C. O'neill and R. A. Field, Enzymatic synthesis using glycoside phosphorylases, Carbohydr. Res, vol.403, pp.23-37, 2015.

R. Field, S. Kuhaudomlarp, G. Pergolizzi, E. Kalita, and R. A. Field, Glycan phosphorylases in multi-enzyme synthetic processes, Protein Pept. Lett, vol.24, pp.696-709, 2017.

A. Bacic, G. B. Fincher, and B. A. Stone, Glucans and Related Polysaccharides, p.6, 2009.

C. S. Buller, Water insoluble polysaccharide polymer and method thereof, 1990.

P. P. Jagodzinski, R. Wiaderkiewicz, G. Kurzawski, M. Kloczewiak, H. Nakashima et al., Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro, Virology, vol.202, pp.735-745, 1994.

T. Watanabe, R. Shimada, A. Matsuyama, M. Yuasa, H. Sawamura et al., Antitumor activity of the -glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice, Food Funct, vol.4, pp.1685-1690, 2013.

P. Kankkunen, L. Teirilä, J. Rintahaka, H. Alenius, H. Wolff et al., ,3)--glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages, J. Immunol, vol.184, issue.1, pp.6335-6342, 2010.

C. Medline,

M. Shibakami, G. Tsubouchi, M. Sohma, and M. Hayashi, Onepot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride, Carbohydr. Polym, vol.119, pp.1-7, 2015.

L. Barsanti, R. Vismara, V. Passarelli, and P. Gualtieri, Paramylon (-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis: effects of growth conditions, J. Appl. Phycol, vol.13, pp.59-65, 2001.

S. Trouvelot, A. Varnier, M. Allègre, L. Mercier, F. Baillieul et al., A -1,3 glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death, CrossRef Medline 11. Hrmova, vol.21, pp.30102-30111, 2002.

Y. Ogawa, K. Noda, S. Kimura, M. Kitaoka, and M. Wada, Facile preparation of highly crystalline lamellae of (1 3 3)--D-glucan using an extract of Euglena gracilis, Int. J. Biol. Macromol, vol.64, pp.415-419, 2014.

C. Müller, T. Ortmann, A. Abi, D. Hartig, S. Scholl et al., Immobilization and characterization of E. gracilis extract with enriched laminaribiose phosphorylase activity for bienzymatic production of laminaribiose, Appl. Biochem. Biotechnol, vol.182, pp.197-215, 2017.

E. C. O'neill, M. Trick, L. Hill, M. Rejzek, R. G. Dusi et al., The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry, Mol. BioSyst, vol.11, 2015.

E. C. O'neill, M. Trick, B. Henrissat, and R. A. Field, Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry, Perspect. Sci, vol.6, pp.84-93, 2015.

I. M. Ivanova, S. A. Nepogodiev, G. Saalbach, E. C. O'neill, M. D. Urbaniak et al., Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes, Carbohydr. Res, vol.438, pp.26-38, 2017.

M. Rejzek, L. Hill, E. S. Hems, S. Kuhaudomlarp, B. A. Wagstaff et al., Profiling of sugar nucleotides, Methods Enzymol, vol.597, pp.209-238, 2017.

E. O'neill, S. Kuhaudomlarp, M. Rejzek, J. Fangel, K. Alagesan et al., Exploring the glycans of Euglena gracilis, Biology, 2017.

E. C. O'neill, G. Pergolizzi, C. E. Stevenson, D. M. Lawson, S. A. Nepogodiev et al., Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis, Carbohydr. Res, vol.451, pp.118-132, 2017.

E. C. O'neill, A. M. Rashid, C. E. Stevenson, A. Hetru, A. P. Gunning et al., Sugar-coated sensor chip and nanoparticle surfaces for the in vitro enzymatic synthesis of starch-like materials, Chem. Sci, vol.5, pp.341-350, 2014.

S. H. Goldemberg, L. R. Maréchal, B. C. Souza, . De, L. R. Mar et al., ,3-Oligoglucan:orthophosphate glucosyltransferase from Euglena gracilis, J. Biol. Chem, issue.1, pp.45-50, 1966.

M. Kitaoka, Diversity of phosphorylases in glycoside hydrolase families, Appl. Microbiol. Biotechnol, vol.99, 2015.

L. R. Maréchal and S. H. Goldemberg, Laminaribiose phosphorylase from Euglena gracilis, Biochem. Biophys. Res. Commun, vol.13, pp.2-5, 1963.

M. Kitaoka, T. Sasaki, and H. Taniguchi, Purification and properties of laminaribiose phosphorylase (EC 2.4.1.31) from Euglena gracilis, Z. Arch. Biochem. Biophys, vol.304, pp.508-514, 1993.

D. J. Manners, T. , and D. , Studies on carbohydrate metabolizing enzymes XVI: specificity of laminaribiose phosphorylase from Astasia ocellata, Arch. Biochem. Biophys, vol.121, pp.443-451, 1967.

M. Kitaoka, Y. Matsuoka, K. Mori, M. Nishimoto, and K. Hayashi, Characterization of a bacterial laminaribiose phosphorylase, Biosci. Biotechnol. Biochem, vol.76, pp.343-348, 2012.

T. Nihira, Y. Saito, M. Kitaoka, M. Nishimoto, K. Otsubo et al., Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3--D-glucosyl disaccharides, Carbohydr. Res, vol.361, pp.49-54, 2012.

L. R. Marechal, 1,3-oligoglucan: orthophosphate glucosyltransferases from Euglena gracilis I: isolation and some properties of a -1,3-oligoglucan phosphorylase, Biochim. Biophys. Acta, vol.146, pp.417-430, 1967.

C. Medline,

G. J. Albrecht and H. Kauss, Purification, crystallization and properties of a -(133)-glucan phosphorylase from Ochromonas malhamensis 10, pp.1293-1298, 1971.

Y. Yamamoto, D. Kawashima, A. Hashizume, M. Hisamatsu, and N. Isono, Purification and characterization of 1,3--D-glucan phosphorylase from Ochromonas danica, Biosci. Biotechnol. Biochem, vol.77, 1949.

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, 2014.

M. I. Trindade, V. R. Abratt, R. , and S. J. , Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose, Appl. Environ. Microbiol, vol.69, pp.24-32, 2003.

T. Nihira, E. Suzuki, M. Kitaoka, M. Nishimoto, K. Ohtsubo et al., Discovery of -1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans, J. Biol. Chem, vol.288, pp.27366-27374, 2013.

K. Chiku, T. Nihira, E. Suzuki, M. Nishimoto, M. Kitaoka et al., Discovery of two -1,2-mannoside phosphorylases showing different chain-length specificities from Thermoanaerobacter sp. X-514, PLoS One, vol.9, 2014.

N. Terrapon, V. Lombard, H. J. Gilbert, and B. Henrissat, Automatic prediction of polysaccharide utilization loci in Bacteroidetes species, Bioinformatics, vol.31, pp.647-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01438994

J. M. Grondin, K. Tamura, G. Déjean, D. W. Abbott, and H. Brumer, Polysaccharide utilization loci: fuelling microbial communities, J. Bacteriol, vol.199, pp.860-876, 2017.

Y. Yoshida, T. Tomiyama, T. Maruta, M. Tomita, T. Ishikawa et al., De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions, BMC Genomics, vol.17, 2016.

S. Fushinobu, M. Hidaka, A. M. Hayashi, T. Wakagi, H. Shoun et al., Interactions between glycoside hydrolase family 94 cellobiose phosphorylase and glucosidase inhibitors, J. Appl. Glycosci, vol.58, pp.91-97, 2011.

I. N. Cruz, C. S. Barry, H. B. Kramer, C. C. Chuang, S. Lloyd et al., Glycomimetic affinity-enrichment proteomics identifies partners for a clinically-utilized iminosugar, Chem. Sci, vol.4, pp.3442-3446, 2013.

T. Takeda, Y. Nakano, M. Takahashi, N. Konno, Y. Sakamoto et al., Identification and enzymatic characterization of an endo-1,3--glucanase from Euglena gracilis, Phytochemistry, vol.116, pp.21-27, 2015.

N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg et al., A versatile ligation-independent cloning method suitable for high-throughput expression screening applications, Nucleic Acids Res, vol.35, 2007.

Y. Wu, G. Mao, H. Fan, A. Song, Y. P. Zhang et al., Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity, Sci. Rep, vol.7, 2017.

T. Sawano, W. Saburi, K. Hamura, H. Matsui, and H. Mori, Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group, FEBS J, vol.280, pp.4463-4473, 2013.

C. Medline,

M. Hidaka, M. Kitaoka, K. Hayashi, T. Wakagi, H. Shoun et al., Structural dissection of the reaction mechanism of cellobiose phosphorylase, Biochem. J, vol.398, pp.37-43, 2006.

M. Hidaka, Y. Honda, M. Kitaoka, S. Nirasawa, K. Hayashi et al., Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (/)(6) barrel fold, Structure, vol.12, pp.937-947, 2004.

A. Van-hoorebeke, J. Stout, J. Kyndt, M. De-groeve, I. Dix et al., Crystallization and X-ray diffraction studies of cellobiose phosphorylase from Cellulomonas uda, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.66, pp.346-351, 2010.

C. M. Bianchetti, N. L. Elsen, B. G. Fox, and G. N. Phillips, Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.67, pp.1345-1349, 2011.

Y. Nam, T. Nihira, T. Arakawa, Y. Saito, M. Kitaoka et al., Crystal structure and substrate recognition of cellobionic acid phosphorylase, which plays a key role in oxidative cellulose degradation by microbes, J. Biol. Chem, vol.290, pp.18281-18292, 2015.

M. Hoffmeister, M. Piotrowski, U. Nowitzki, M. , and W. , Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis, J. Biol. Chem, vol.280, pp.4329-4338, 2005.

K. Krná?ová, M. Vesteg, V. Hampl, C. ?. Vl?ek, and A. Horváth, Euglena gracilis and Trypanosomatids possess common patterns in predicted mitochondrial targeting presequences, J. Mol. Evol, vol.75, pp.119-129, 2012.

S. B. Conners, C. I. Montero, D. A. Comfort, K. R. Shockley, M. R. Johnson et al., An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima, J. Bacteriol, vol.187, pp.7267-7282, 2005.

Z. Wang, K. L. Robertson, C. Liu, J. L. Liu, B. J. Johnson et al., A novel Vibrio -glucosidase (LamN) that hydrolyzes the algal storage polysaccharide laminarin, FEMS Microbiol. Ecol, vol.91, pp.43-60, 2010.

N. Terrapon, V. Lombard, É. Drula, P. Lapébie, S. Al-masaudi et al., PULDB: the expanded database of Polysaccharide Utilization Loci, Nucleic Acids Res, vol.46, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094620

M. R. De-groeve, G. H. Tran, A. Van-hoorebeke, J. Stout, T. Desmet et al., Development and application of a screening assay for glycoside phosphorylases, Anal. Biochem, vol.401, pp.162-167, 2010.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol, vol.7, pp.539-539, 2011.

S. Capella-gutiérrez, J. M. Silla-martínez, and T. Gabaldón, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.

S. Guindon, F. Lethiec, P. Duroux, and O. Gascuel, PHYML online: a web server for fast maximum likelihood-based phylogenetic inference, Nucleic Acids Res, vol.33, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00105317

I. Letunic and P. Bork, Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation, Bioinformatics, vol.23, pp.127-128, 2007.