E. Grafius, Economic impact of insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Michigan potato industry, J. Econ. Entomol, vol.90, pp.1144-1151, 1997.

K. Skryabin, Do Russia and Eastern Europe need GM plants?, Nat. Biotechnol, vol.27, pp.593-595, 2010.

B. D. Walsh, The new potato bug and its natural history, Practical Entomol, vol.1, pp.1-4, 1865.

N. L. Gauthier, R. N. Hofmaster, and M. Semel, History of Colorado potato beetle control in Advances in potato pest management, pp.13-33, 1981.

J. D. Hare, Ecology and management of the Colorado potato beetle, Annu. Rev. Entomol, vol.41, pp.81-100, 1990.

D. C. Weber, Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) in Encyclopedia of entomology, pp.1008-1013, 2008.

A. Lyytinen, S. Boman, A. Grapputo, L. Lindström, and J. Mappes, Cold tolerance during larval development: effects on the thermal distribution limits of Leptinotarsa decemlineata, Entomol. Exp. Appl, vol.133, pp.92-99, 2009.

K. Hiiesaar, Factors affecting development and overwintering of second generation Colorado potato beetle (Coleoptera: Chrysomelidae) in Estonia in 2010, Acta Agric. Scand. Sect. B -Soil Plant Sci, vol.63, pp.506-515, 2013.

K. Hiiesaar, Phenology and overwintering of the Colorado potato beetle Leptinotarsa decemlineata Say in 2008-2015 in Estonia, Acta Agric. Scand. Sect. B -Soil Plant Sci, vol.66, pp.1-8, 2016.

A. Alyokhin, M. Baker, D. Mota-sanchez, G. Dively, and E. Grafius, Colorado potato beetle resistance to insecticides, Am J Potato Res, vol.85, pp.395-413, 2008.

T. C. Sparks and R. Nauen, IRAC: Mode of action classification and insecticide resistance management. Pestic, Biochem. Physiol, vol.121, pp.122-128, 2015.

V. Izzo, Y. H. Chen, S. D. Schoville, C. Wang, and D. J. Hawthorne, Origin of pest lineages of the Colorado potato beetle, Leptinotarsa decemlineata. bioRxiv 156612, 2017.

P. Lehmann, A. Lyytinen, S. Piiroinen, and L. Lindström, Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata), Oecologia, vol.176, pp.57-68, 2014.

N. Liu, Y. Li, and R. Zhang, Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact, Entomol. Exp. Appl, vol.143, pp.207-217, 2012.

A. Grapputo, S. Boman, L. Lindström, A. Lyytinen, and J. Mappes, The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations, Mol. Ecol, vol.14, pp.4207-4219, 2005.

A. Azeredo-espin, R. Schroder, M. Huettel, and W. Sheppard, Mitochondrial DNA variation in geographic populations of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera; Chrysomelidae), Experientia, vol.47, pp.483-485, 1991.

W. Lu, G. G. Kennedy, and F. Gould, Genetic analysis of larval survival and larval growth of two populations of Leptinotarsa decemlineata on tomato, Entomol. Exp. Appl, vol.99, pp.143-155, 2001.

K. J. Gaston, The how and why of biodiversity, Nature, vol.421, pp.900-901, 2003.

W. J. Turnock and P. G. Fields, Winter climates and cold hardiness in terrestrial insects, Eur. J. Entomol, vol.102, pp.561-576, 2005.

S. Piiroinen, T. Ketola, A. Lyytinen, and L. Lindström, Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle, Funct. Ecol, vol.25, pp.527-536, 2011.

P. Lehmann, A. Lyytinen, S. Piiroinen, and L. Lindström, Latitudinal differences in diapause related photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata), Evol. Ecol, vol.29, pp.269-282, 2015.

T. H. Hsiao, Host plant adaptations among geographic populations of the Colorado potato beetle, Entomol. Exp. Appl, vol.24, pp.237-247, 1978.

. Scientific-reports-|, , vol.8, 1931.

P. Jolivet, Bionomic and evolutionary perspectives in Biology of the chrysomelidae, pp.1-24, 1988.

T. H. Hsiao, Host specificity, seasonality and bionomics of Leptinotarsa beetles in Biology of the chrysomelidae, pp.581-599, 1988.

J. D. Hare and G. G. Kennedy, Genetic variation in plant-insect associations: survival of Leptinotarsa decemlineata populations on Solanum carolinense, Evolution, vol.40, pp.1031-1043, 1986.

R. L. Jacques and T. R. Fasulo, Colorado potato beetle, Leptinotarsa decemlineata (Say) and False potato beetle, Leptinotarsa juncta (Germar) (Insecta: Coleoptera: Chrysomelidae), Univ. Florida IFAS Ext, vol.146, pp.1-5, 2000.

A. Alyokhin and Y. H. Chen, Adaptation to toxic hosts as a factor in the evolution of insecticide resistance, Curr. Opin. Insect Sci, vol.21, pp.33-38, 2017.

P. D. Cárdenas, The bitter side of the nightshades: Genomics drives discovery in Solanaceae steroidal alkaloid metabolism, Phytochemistry, vol.113, pp.24-32, 2015.

S. E. Milner, Bioactivities of glycoalkaloids and their aglycones from Solanum species, J. Agric. Food Chem, vol.59, pp.3454-3484, 2011.

M. B. Dimock and W. M. Tingey, Host acceptance behaviour of Colorado potato beetle larvae influenced by potato glandular trichomes, Physiol. Entomol, vol.13, pp.399-406, 1988.

S. D. Lawrence, N. G. Novak, C. J. Ju, .. Cooke, and J. E. , Examining the molecular interaction between potato (Solanum tuberosum) and Colorado potato beetle Leptinotarsa decemlineata, Botany, vol.86, pp.1080-1091, 2008.

M. Petek, A complex of genes involved in adaptation of Leptinotarsa decemlineata larvae to induced potato defense, Arch. Insect Biochem. Physiol, vol.79, pp.153-181, 2012.

C. Novillo, P. Castañera, and F. Ortego, Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae, Arch. Insect Biochem. Physiol, vol.36, pp.181-201, 1997.

C. A. Armer, Colorado potato beetle toxins revisited: Evidence the beetle does not sequester host plant glycoalkaloids, J. Chem. Ecol, vol.30, pp.883-888, 2004.

C. Deroe and J. Pasteels, Defensive mechanisms against predation in the Colorado beetle (Leptinotarsa decemlineata, Say), Arch. Biol. Sci, vol.88, pp.289-304, 1977.

T. H. Hsiao and G. Fraenkel, Properties of Leptinotarsin: a toxic hemolymph protein from the Colorado potato beetle, Toxicon, vol.7, pp.119-130, 1969.

A. J. Forgash, Insecticide resistance in the Colorado, Proceedings of the symposium on the Colorado potato beetle, XVII International Congress of Entomology, pp.33-52, 1984.

P. Wan, Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata. Pestic, Biochem. Physiol, vol.107, pp.360-368, 2013.

J. Zhang, Y. Pelletier, and C. Goyer, Identification of potential detoxification enzyme genes in Leptinotarsa decemlineata (Say) and study of their expression in insects reared on different plants, J. Plant Sci, vol.88, pp.621-629, 2008.

F. Lü, Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. Pestic, Biochem. Physiol, vol.122, pp.86-95, 2015.

F. Zhu, J. Xu, R. Palli, J. Ferguson, and S. R. Palli, Ingested RNA interference for managing the populations of the Colorado potato beetle. Leptinotarsa decemlineata, Pest Manag. Sci, vol.67, pp.175-182, 2011.

J. Clements, S. Schoville, N. Peterson, Q. Lan, and R. L. Groves, Characterizing molecular mechanisms of imidacloprid resistance in select populations of Leptinotarsa decemlineata in the Central Sands region of Wisconsin, PLoS One, vol.11, p.147844, 2016.

A. Kumar, Sequencing, de novo assembly and annotation of the Colorado potato beetle, Leptinotarsa decemlineata, transcriptome, PLoS One, vol.9, p.86012, 2014.

F. D. Rinkevich, Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle. Leptinotarsa decemlineata. Pestic, Biochem. Physiol, vol.104, pp.192-200, 2012.

L. T. Zhou, RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say), J. Insect Physiol, vol.59, pp.1049-1056, 2013.

J. Zhang, Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids, Science, vol.347, pp.991-994, 2015.

D. Mota-sanchez, R. M. Hollingworth, E. J. Grafius, and D. D. Moyer, Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), Pest Manag. Sci, vol.62, pp.30-37, 2006.

F. Zhu, T. W. Moural, D. R. Nelson, and S. R. Palli, A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple cytochrome P450s, Sci. Rep, vol.6, p.20421, 2016.

J. Butler, ALLPATHS: de novo assembly of whole-genome shotgun microreads, Genome Res, vol.18, pp.810-830, 2008.

T. R. Gregory, Animal genome size database, 2017.

, Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum, Nature, vol.452, pp.949-55, 2008.

C. I. Keeling, Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest, Genome Biol, vol.14, p.27, 2013.

C. B. Cunningham, The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae)

, Genome Biol. Evol, vol.7, pp.3383-3396, 2015.

D. D. Mckenna, Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface, Genome Biol, vol.17, p.227, 2016.

F. E. Vega, Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Sci. Rep, vol.5, p.12525, 2015.

E. Petitpierre, C. Segarra, and C. Juan, Genome size and chromosomal evolution in leaf beetles (Coleoptera, Chrysomelidae), Hereditas, vol.6, pp.1-6, 1993.

L. P. Pryszcz and T. Gabaldón, Redundans: an assembly pipeline for highly heterozygous genomes, Nucleic Acids Res, vol.44, pp.113-113, 2016.

J. F. Denton, Extensive error in the number of genes inferred from draft genome assemblies, PLoS Comput. Biol, vol.10, p.1003998, 2014.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

K. Gruden, The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors, Insect Biochem. Mol. Biol, vol.28, pp.549-560, 1998.

A. M. Smilanich, L. A. Dyer, J. Q. Chambers, and M. D. Bowers, Immunological cost of chemical defence and the evolution of herbivore diet breadth, Ecol. Lett, vol.12, pp.612-621, 2009.

N. M. Vidal, A. L. Grazziotin, L. M. Iyer, L. Aravind, and T. M. Venancio, Transcription factors, chromatin proteins and the diversification of Hemiptera, Insect Biochem. Mol. Biol, vol.69, pp.1-13, 2016.

H. S. Najafabadi, C2H2 zinc finger proteins greatly expand the human regulatory lexicon, Nat. Biotech, vol.33, pp.555-562, 2015.

. Scientific-reports-|, , vol.8, 1931.

B. Chénais, A. Caruso, S. Hiard, and N. Casse, The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments, Gene, vol.509, pp.7-15, 2012.

Z. Tu, Insect transposable elements in Insect molecular biology and biochemistry, pp.57-89, 2012.

C. Biémont and C. Vieira, Genetics: junk DNA as an evolutionary force, Nature, vol.443, pp.521-524, 2006.

J. González and D. A. Petrov, The adaptive role of transposable elements in the Drosophila genome, Gene, vol.448, pp.124-133, 2009.

G. Bourque, Evolution of the mammalian transcription factor binding repertoire via transposable elements, Genome Res, vol.18, pp.1752-1762, 2008.

R. Cordaux and M. A. Batzer, The impact of retrotransposons on human genome evolution, Nat. Rev. Genet, vol.10, pp.691-703, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419189

L. N. Van-de-lagemaat, J. R. Landry, D. L. Mager, and P. Medstrand, Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions, Trends Genet, vol.19, pp.530-536, 2003.

C. A. Lavoie, R. N. Platt, P. A. Novick, B. A. Counterman, and D. A. Ray, Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera, Mob DNA, vol.4, p.21, 2013.

M. Osanai-futahashi, Y. Suetsugu, K. Mita, and H. Fujiwara, Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori, Insect Biochem. Mol. Biol, vol.38, pp.1046-1057, 2008.

L. Schrader, Transposable element islands facilitate adaptation to novel environments in an invasive species, Nat. Commun, vol.5, p.5495, 2014.

J. González, T. L. Karasov, P. W. Messer, and D. A. Petrov, Genome-wide patterns of adaptation to temperate environments associated with transposable elements in. Drosophila, PLoS Genet, vol.6, p.1000905, 2010.

J. M. Cridland, K. R. Thornton, and A. D. Long, Gene expression variation in Drosophila melanogaster due to rare transposable element insertion alleles of large effect, Genetics, vol.199, pp.85-93, 2015.

P. J. Daborn, A single P450 allele associated with insecticide resistance in Drosophila, Science, vol.297, pp.2253-2256, 2002.

P. W. Messer and D. A. Petrov, Population genomics of rapid adaptation by soft selective sweeps, Trends Ecol. Evol, vol.28, pp.659-669, 2013.

C. F. Aquadro, V. B. Dumont, and F. A. Reed, Genome-wide variation in the human and fruitfly: a comparison, Curr. Opin. Genet. Dev, vol.11, pp.627-634, 2001.

, International Chicken Polymorphism Map Consortium. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms, Nature, vol.432, pp.717-722, 2004.

J. Choi, Gene discovery in the horned beetle Onthophagus taurus, BMC Genomics, vol.11, p.703, 2010.

I. Morlais, N. Ponçon, F. Simard, A. Cohuet, and D. Fontenille, Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors, Am. J. Trop. Med. Hyg, vol.71, pp.795-802, 2004.

J. L. Campos, L. Zhao, and B. Charlesworth, Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion, Proc. Natl Acad. Sci. USA, vol.114, pp.4762-4771, 2017.

O. Dangles, D. Irschick, L. Chittka, and J. Casas, Variability in sensory ecology: expanding the bridge between physiology and evolutionary biology, Q. Rev. Biol, vol.84, pp.51-74, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00412236

H. Matsuura, T. Sokabe, K. Kohno, M. Tominaga, and T. Kadowaki, Evolutionary conservation and changes in insect TRP channels, BMC Evol Biol, vol.9, p.228, 2009.

K. Venkatachalam, C. Montell, and . Channels, Annu. Rev. Biochem, vol.76, pp.387-417, 2007.

A. Nesterov, TRP channels in insect stretch receptors as insecticide targets, Neuron, vol.86, pp.665-671, 2015.

F. Hauser, A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum, Front. Neuroendocrinol, vol.29, pp.142-165, 2008.

Y. Nishi, K. Sasaki, and T. Miyatake, Biogenic amines, caffeine and tonic immobility in Tribolium castaneum, J. Insect Physiol, vol.56, pp.622-628, 2010.

T. Roeder, Biochemistry and molecular biology of receptors for biogenic amines in locusts, Microsc. Res. Tech, vol.56, pp.237-247, 2002.

L. Schoonhoven, J. J. Van-loon, and M. Dicke, Insect-Plant Biology, 2005.

W. S. Leal, Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes, Annu. Rev. Entomol, vol.58, pp.373-391, 2013.

P. Pelosi, J. Zhou, L. P. Ban, and M. Calvello, Soluble proteins in insect chemical communication, Cell. Mol. Life Sci, vol.63, pp.1658-1676, 2006.

H. M. Robertson, C. G. Warr, and J. R. Carlson, Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, vol.100, pp.14537-14542, 2003.

K. Sato, K. Tanaka, and K. Touhara, Sugar-regulated cation channel formed by an insect gustatory receptor, Proc. Natl. Acad. Sci. USA, vol.108, pp.11680-11685, 2011.

R. Rytz, V. Croset, and R. Benton, Ionotropic Receptors (IRs): Chemosensory ionotropic glutamate receptors in Drosophila and beyond, Insect Biochem. Mol. Biol, vol.43, pp.888-897, 2013.

M. Jackowska, Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum, Front. Zool, vol.4, p.24, 2007.

C. R. Sharkey, Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci. Rep, vol.7, 2017.

V. M. Izzo, N. Mercer, J. Armstrong, and Y. H. Chen, Variation in host usage among geographic populations of Leptinotarsa decemlineata, the Colorado potato beetle, J. Pest. Sci, vol.87, pp.597-608, 2014.

F. Otálora-luna and J. C. Dickens, Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light, PLoS One, vol.6, p.20990, 2011.

A. D. Briscoe and L. Chittka, The evolution of color vision in insects, Annu. Rev. Entomol, vol.46, pp.471-510, 2001.

N. Y. Leung and C. Montell, Unconventional roles of opsins, Annu. Rev. Cell. Dev. Biol, vol.33, pp.241-264, 2017.

P. W. Price, R. F. Denno, M. D. Eubanks, D. L. Finke, and I. Kaplan, Insect ecology: behavior, populations and communities, 2011.

M. Martinez, Phytocystatins: defense proteins against phytophagous insects and Acari, Int. J. Mol. Sci, vol.17, p.1747, 2016.

J. L. Wolfson and L. L. Murdock, Suppression of larval Colorado potato beetle growth and development by digestive proteinase inhibitors, Entomol. Exp. Appl, vol.44, pp.235-240, 1987.

C. J. Bolter and M. A. Jongsma, Colorado potato beetles (Leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate, J. Insect Physiol, vol.41, pp.1071-1078, 1995.

L. L. Murdock, Cysteine digestive proteinases in Coleoptera, Biochem. Physiol, vol.87, pp.783-787, 1987.

M. Chye, S. Sin, Z. Xu, and E. C. Yeung, Serine proteinase inhibitor proteins: Exogenous and endogenous functions, Vitr. Cell. Dev. Biol.-Plant, vol.42, pp.100-108, 2006.

K. Gruden, T. Popovi?, N. Cimerman, I. Kri?aj, and B. ?trukelj, Diverse enzymatic specificities of digestive proteases, "intestains", enable Colorado potato beetle larvae to counteract the potato defence mechanism, Biol. Chem, vol.384, pp.305-310, 2003.

K. Gruden, Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases, Insect Biochem. Mol. Biol, vol.34, pp.365-375, 2004.

I. A. Goptar, Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests, Comp. Biochem. Physiol. Part B, vol.161, pp.148-154, 2012.

V. Turk, Cysteine cathepsins: From structure, function and regulation to new frontiers, Biochim. Biophys. Acta -Proteins Proteomics, vol.1824, pp.68-88, 2012.

A. Scientific-reports-|-;-marchler-bauer, CDD: NCBI's conserved domain database, Nucleic Acids Res, vol.8, pp.222-226, 1931.

R. D. Finn, Pfam: the protein families database, Nucleic Acids Res, vol.42, pp.222-230, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01294685

T. Wex, TIN-ag-RP, a novel catalytically inactive cathepsin B-related protein with EGF domains, is predominantly expressed in vascular smooth muscle cells, Biochemistry, vol.40, pp.1350-1357, 2001.

Y. Yamamoto, M. Kurata, S. Watabe, R. Murakami, and S. Y. Takahashi, Novel cysteine proteinase inhibitors homologous to the proregions of cysteine proteinases, Curr. Protein Pept. Sci, vol.3, pp.231-238, 2002.

F. Sainsbury, A. Rheáume, M. Goulet, J. Vorster, and D. Michaud, Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities, J. Proteome Res, vol.11, pp.5983-5993, 2012.

A. G. Martynov, E. N. Elpidina, L. Perkin, and B. Oppert, Functional analysis of C1 family cysteine peptidases in the larval gut of ?enebrio molitor and Tribolium castaneum, BMC Genomics, vol.16, p.75, 2015.

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnol. Biofuels, vol.6, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

E. D. Scully, K. Hoover, J. E. Carlson, M. Tien, and S. M. Geib, Mid-gut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle, BMC Genomics, vol.14, p.850, 2013.

R. Kirsch, Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles, Insect Biochem. Mol. Biol, vol.52, pp.33-50, 2014.

Y. Pauchet, P. Wilkinson, R. Chauhan, and R. H. Ffrench-constant, Diversity of beetle genes encoding novel plant cell wall degrading enzymes, PLoS One, vol.5, p.15635, 2010.

U. A. Meyer, Overview of enzymes of drug metabolism, J. Pharmacokinet. Pharmacodyn, vol.24, pp.449-459, 1996.

J. R. Bloomquist, Chloride channels as tools for developing selective insecticides, Arch. Insect Biochem. Physiol, vol.54, pp.145-156, 2003.

L. Goff, G. Hamon, A. Bergé, J. Amichot, and M. , Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit, J. Neurochem, vol.92, pp.1295-1305, 2005.

A. K. Jones and D. B. Sattelle, The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans, Invert. Neurosci, vol.8, pp.41-47, 2008.

A. K. Jones and D. B. Sattelle, Diversity of insect nicotinic acetylcholine receptor subunits in Insect nicotinic acetylcholine receptors, pp.25-43, 2010.

R. H. Ffrench-constant, D. P. Mortlock, C. D. Shaffer, R. J. Macintyre, and R. T. Roush, Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus, Proc. Natl. Acad. Sci. USA, vol.88, pp.7209-7213, 1991.

R. H. Ffrench-constant and T. A. Rocheleau, Drosophila ?-aminobutyric acid receptor gene Rdl shows extensive alternative splicing, J. Neurochem, vol.60, pp.2323-2326, 1993.

S. D. Buckingham, P. C. Biggin, B. M. Sattelle, L. A. Brown, and D. B. Sattelle, Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides, Mol. Pharmacol, vol.68, pp.942-951, 2005.

J. Clements, S. Schoville, N. Peterson, Q. Lan, and R. L. Groves, Characterizing molecular mechanisms of Imidacloprid resistance in select populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin, PLoS One, vol.11, p.147844, 2016.

J. Clements, RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata, Pestic. Biochem. Physiol, vol.135, pp.35-40, 2017.

J. H. Willis, Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era, Insect Biochem. Mol. Biol, vol.40, pp.189-204, 2010.

C. M. Mcdonnell, Evolutionary toxicogenomics: diversification of the Cyp12d1 and Cyp12d3 Genes in Drosophila species, J. Mol. Evol, vol.74, pp.281-96, 2012.

F. Hu, W. Dou, J. Wang, F. Jia, and J. Wang, Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis, Pest Manag. Sci, vol.70, pp.295-303, 2014.

J. Han, G. Li, P. Wan, T. Zhu, and Q. Meng, Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides, Pestic. Biochem. Physiol, vol.133, pp.26-34, 2016.

A. Fire, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-811, 1998.

H. Siomi and M. C. Siomi, On the road to reading the RNA-interference code, Nature, vol.457, pp.396-404, 2009.

L. Revuelta, Contribution of ldace1 gene to acetylcholinesterase activity in Colorado potato beetle, Insect Biochem. Mol. Biol, vol.41, pp.795-803, 2011.

P. Wan, K. Fu, F. Lü, W. Guo, and G. Li, Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata, Amino Acids, vol.47, pp.1445-1454, 2015.

J. A. Baum, Control of coleopteran insect pests through RNA interference, Nat. Biotechnol, vol.25, p.1322, 2007.

L. Swevers, Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes, Insect Mol. Biol, vol.22, pp.668-684, 2013.

E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, vol.409, pp.363-366, 2001.

A. Grishok, Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell, vol.106, pp.23-34, 2001.

J. Yoon, J. N. Shukla, Z. J. Gong, K. Mogilicherla, and S. R. Palli, RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors, Insect Biochem. Mol. Biol, vol.78, pp.78-88, 2016.

H. Guénin and M. Scherler, La formule chromosomiale du doryphore Leptinotarsa decemlineata Stål, Rev. Suisse Zool, vol.58, pp.359-370, 1951.

T. H. Hsiao and C. Hsiao, Chromosomal analysis of Leptinotarsa and Labidomera species, Genetica, vol.60, pp.139-150, 1983.

M. Poelchau, The i5k Workspace@NAL-enabling genomic data access, visualization and curation of arthropod genomes, Nucleic Acids Res, vol.43, pp.714-719, 2015.

G. Marcais and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers, Bioinformatics, vol.27, pp.764-770, 2011.

C. Holt and M. Yandell, MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects, BMC Bioinformatics, vol.12, p.491, 2011.

E. Lee, Web Apollo: a web-based genomic annotation editing platform, Genome Biol, vol.14, p.93, 2013.

M. D. Adams, The genome sequence of Drosophila melanogaster, Science, vol.287, pp.2185-2195, 2000.

C. Camacho, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

M. A. Larkin, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2948, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

D. R. Laetsch and M. L. Blaxter, BlobTools: Interrogation of genome assemblies, vol.6, p.1287, 2017.

, Nucleotide (nt) database, 2018.

B. Buchfink, C. Xie, and D. Huson, Fast and sensitive protein alignment using DIAMOND, Nature Methods, vol.12, pp.59-60, 2015.

, UniProt: the universal protein knowledgebase, The UniProt Consortium, vol.45, pp.158-169, 2017.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

. Scientific-reports-|, , vol.8, 1931.

E. V. Kriventseva, OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software, Nucleic Acids Res, vol.43, pp.250-256, 2015.

S. Mirarab, PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences, J. Comput. Biol, vol.22, pp.377-386, 2015.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.2010-2011, 2014.

S. Mirarab and T. Warnow, ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes, Bioinformatics, vol.31, pp.44-52, 2015.

M. J. Sanderson, r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock, Bioinformatics, vol.19, pp.301-302, 2003.

J. M. Wolfe, A. C. Daley, D. A. Legg, and G. D. Edgecombe, Fossil calibrations for the arthropod Tree of Life, Earth-Sci. Rev, vol.160, pp.43-110, 2016.

M. V. Han, G. W. Thomas, J. Lugo-martinez, and M. W. Hahn, Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3, Mol. Biol. Evol, vol.30, pp.1987-1997, 2013.

A. J. Rosendale, L. E. Romick-rosendale, M. Watanabe, M. E. Dunlevy, and J. B. Benoit, Mechanistic underpinnings of dehydration stress in the American dog tick revealed through RNA-seq and metabolomics, J. Exp. Biol, vol.219, pp.1808-1819, 2016.

K. A. Baggerly, L. Deng, J. S. Morris, and C. M. Aldaz, Differential expression in SAGE: accounting for normal between-library variation, Bioinformatics, vol.19, pp.1477-1483, 2003.

A. F. Smit, R. Hubley, and P. Green,

A. Smit and R. Hubley,

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, p.357, 2012.

H. Li, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

P. Danecek, The variant call format and VCFtools, Bioinformatics, vol.27, pp.2156-2158, 2011.

J. K. Pickrell and J. K. Pritchard, Inference of population splits and mixtures from genome-wide allele frequency data, PLoS Genet, vol.8, p.1002967, 2012.

R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante, Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data, PLoS Genet, vol.5, p.1000695, 2009.

R. L. Jacques, The potato beetles, 1988.