. Mhz, 26 (s, 1H), 8.28 (s, 1H), DMSO-d6) ? 9, vol.8

, Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H), vol.7

. Mhz, 4 (CHAr), 135.6 (CIV,Ar), DMSO-d6) ? 152.2 (CHAr), 150.6 (CIV,Ar), vol.144

, HRMS (ESI+) m/z Calc

, 4-Triazol-1-yl)phenyl)-2-(4-(3,5-dimethylisoxazol-4-yl)-2-nitrophenyl)ethanol, vol.2, pp.4-5

, The crude product was prepared according to procedure C starting from 9f (90 mg, p.23

, After purification by column chromatography on silica gel (100% EtOAc), the pure product 10i (50 mg, 0.12 mmol, 54%) was obtained as yellow solid, °C. 1 H NMR (300 MHz, vol.3, p.153

, 7.90 (d, J = 1.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 2H), 7.66 (dd, J = 7.9, 1.5 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), vol.7

, 3 (CHAr), 150.4 (CIV,Ar), vol.152

, 1 (2xCHAr), 114.1 (CIV,Ar), vol.132

. Calc,

, After purification by column chromatography on silica gel (100% EtOAc to EtOAc/MeOH (98:2)), the pure product 10j (95 mg, 0.24 mmol, 88%) was obtained as white solid, p.182

, CHAr, 1H), 8.19 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.9 Hz, 1H), vol.7

. Dimethylaminopyridine, mmol) was added to a mixture of 10h' or 10h'' (17.2 mg, 0.044 mmol), (R)-methoxyphenylacetic acid (MPA) (7.0 mg, 0.044 mmol) and N,N-dicyclohexylcarbodiimide (DCC) (9.0 mg, 0.044 mmol)

, The reaction mixture was stirred at 25 °C for 12 h, cooled to 0 °C and filtered. The filtrate was evaporated and purified by column chromatography on silica gel (100% EtOAc) to furnish Mosher esters 11a and 11b

, 34 (s, 1H), 8.23 (s, 1H), 8.14 (d, J = 1.8 Hz, 1H), 8.02 (s, 1H), 7.81 (dd, Mosher ester 11a: Yield 65%. 1 H NMR (400 MHz, DMSO-d6) ? 9, vol.8

, 32 (s, 1H), 8.31 (s, 1H), 8.26 (s, 1H), 8.05 (d, J = 1, Hz, 1H), 7.99 (s, 1H), 7.87 (d, J = 8.6 Hz, 2H), 7.55-7.52 (m, 3H)

. Scientific, A dilution series of gBlocks (Integrated DNA technologies) was included as standards and RNA content was quantified as genome equivalents per sample. Resistance selection by passaging. HeLa cells grown to confluence in 24-well microtiter plate were infected with wild-type RV-B14 in the presence of 10e, 10h or 1 at a concentration of 4x, 2x or 1x their in vitro EC50. When CPE was visible in the virus control (no compound), all the wells were scored for visible CPE. Next, the cell supernatant, After an additional incubation at 75 °C for 15 min to inactivate DNases, intracellular viral RNA was quantified by qRT-PCR (iTaq? Universal SYBR® Green One-Step Kit

. Briefly, Next, a cDNA fragment covering the VP1 coding sequence was produced using a one-step RT-PCR kit (Qiagen) and RV-B14-specific primers (FP 5'-CCTTATCCAGTGCTAAACTC-3' and RP 5'-GCCCGACCCCTTTCATCAC-3'). cDNA sequences were analysed by Macrogen Inc, viral RNA was isolated using Nucleospin © RNA virus (Macherey-Nagel)

, Cell cultures and metabolic activation mixture (S9 mix), Chinese Hamster Ovary cells

, They were maintained in Mc Coy's 5A medium (Sigma) supplemented with 10% foetal calf serum, 1 mM glutamine and penicillinestreptomycine (100 U/ml-10 µg/ml) and incubated during 24 hours at 37 °C in humidified atmosphere containing 5% CO2. The liver homogenate used for metabolic activation, K1, ATCC) were used for the micronucleus assay

S. E. Jacobs, D. M. Lamson, K. St-george, T. J. Walsh, . Human-rhinoviruses et al.,

. Microbio and . Rev, , vol.26, pp.135-162, 2013.

I. Van-benten, L. Koopman, B. Niesters, W. Hop, B. Van-middelkoop et al., Predominance of rhinovirus in the nose of symptomatic and asymptomatic infants, Pediatr. Allergy Immunol, vol.14, pp.363-370, 2003.

T. Chonmaitree and T. Heikkinen, Viruses and acute otitis media, Pediatr. Infect. Dis. J, vol.19, pp.1005-1007, 2000.

F. M. Chantzi, N. G. Papadopoulos, T. Bairamis, M. Tsiakou, and N. Bournousouzis,

A. G. Constantopoulos, G. Liapi, M. Xatzipsalti, and D. A. Kafetzis, Human rhinoviruses in otitis media with effusion, Pediatr. Allergy Immunol, vol.17, pp.514-518, 2006.

E. Seppälä, S. Sillanpää, N. Nurminen, H. Huhtala, J. Toppari et al.,

M. Knip, M. Sipilä, J. Laranne, S. Oikarinen, and H. Hyöty, Human Enterovirus and Rhinovirus infections are associated with Otitis Media in a prospective birth cohort study, J. Clin. Virol, vol.85, pp.1-6, 2016.

B. Winther, Rhinovirus infections in the upper airway, Proc. Am. Thorac. Soc, vol.8, pp.79-89, 2011.

A. Pitkäranta, M. Starck, S. Savolainen, T. Pöyry, I. Suomalainen et al., Rhinovirus RNA in the maxillary sinus epithelium of adults patients with acute sinusitis, Clin. Infect. Dis, vol.33, pp.909-911, 2001.

H. C. Kim, S. H. Choi, J. W. Huh, H. Sung, S. B. Hong et al., Different pattern of viral infections and clinical outcomes in patient with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Chronic Obstructive Pulmonary Disease with pneumonia, J. Med. Virol, vol.88, pp.2092-2099, 2016.

V. Peltola, M. Waris, R. Österback, P. Susi, T. Hyypiä et al., Clinical effects of rhinovirus infections, J. Clin. Virol, vol.43, pp.411-414, 2008.

M. B. Hershenson, Rhinovirus-induced exacerbations of Asthma and COPD, pp.1-12, 2013.

S. L. Friedlander and W. W. Busse, The role of rhinovirus in asthma exacerbations

, Allergy Cil. Immunol, vol.116, pp.267-273, 2005.

J. E. Gern, How Rhinovirus Infections Cause Exacerbations of Asthma, Clin. Exp. Allergy, vol.45, pp.32-42, 2015.

C. S. Kraft, J. T. Jacob, M. H. Sears, E. M. Burd, A. M. Caliendo et al., Severity of human rhinovirus infection in immunocompromised adults is similar to that of 2009 H1N1 influenza, J. Clin. Microbiol, vol.50, pp.1061-1063, 2012.

P. Mallia, S. D. Message, V. Gielen, M. Contoli, K. Gray et al., Experimental Rhinovirus infection as a Human model of Chronic Obstructive Pulmonary Disease Exacerbation, Am. J. Respir. Crit. Care. Med, vol.183, pp.734-742, 2011.

J. A. Wedzicha, Role of viruses in exacerbations of chronic obstructive pulmonary disease, Proc. Am. Thorac. Soc, vol.1, pp.115-120, 2004.

A. Goffard, V. Lambert, J. Salleron, S. Herwegh, I. Engelmann et al., Virus and cystic fibrosis: Rhinoviruses are associated with exacerbations in adult patients, J. Clin. Virol, vol.60, pp.147-153, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02266763

M. B. De-almeida, R. M. Zerbinati, A. F. Tateno, C. M. Oliveira, R. M. Romao et al., Rhinovirus C and respiratory exacerbations in children with cystic fibrosis, Emerg. Infect. Dis, vol.16, pp.996-999, 2010.

L. Royston, C. Tapparel, R. Rhinoviruses, and . Enteroviruses, Not as Simple as ABC. Viruses, vol.16, 2016.

A. C. Palmenberg, D. Spiro, R. Kuzmickas, S. Wang, A. Djikeng et al., J. A

C. M. Liggett and S. B. Liggett, Sequencing and analyses of all known Human Rhinovirus genomes Reveal structure and evolution, Science, vol.324, p.55, 2009.

M. A. Oliveira, R. Zhao, and W. Lee,

M. J. Kremer, I. Minor, R. R. Rueckert, and G. Diana,

D. Pevear, D. C. Dutko, F. J. Mckinlay, M. A. Rossmann, and M. , The structure of Human rhinovirus 16. Structure, vol.1, pp.51-68, 1993.

E. A. Hewat and D. Blaas, Cryoelectron microscopy analysis of the structural changes associated with Human rhinovirus type 14 uncoating, J. Virol, vol.78, pp.2935-2942, 2004.

D. Garriga, A. Pickl-herk, D. Luque, J. Wruss, J. R. Castón et al.,

, Insights into minor group Rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid, PLoS Pathogens, vol.8, p.1002473, 2012.

N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein, Nat. Struct. Mol. Biol, vol.11, pp.429-434, 2004.

J. M. Greve, G. Davis, A. M. Meyer, C. P. Forte, S. C. Yost et al.,

M. E. Mcclelland and A. , The major Human Rhinovirus receptor is ICAM-1, Cell, vol.56, pp.839-847, 1989.

F. Hofer, M. Gruenberger, H. Kowalski, H. Machat, M. Huettinger et al.,

D. Blaas, Members of the low density lipoprotein receptor family mediate cell entry of a minorgroup common cold virus, Proc. Natl. Acad. Sci, vol.91, pp.1839-1842, 1994.

Y. A. Bochkov, K. Watters, S. Ashraf, T. F. Griggs, M. K. Devries et al., Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication, Proc. Natl. Acad. Sci, vol.112, pp.5485-5490, 2015.

A. C. Palmenberg, Rhinovius C, asthma, and cell surface expression of virus receptor CDHR3, J. Virol, vol.91, pp.72-89, 2017.

U. Katpally and T. J. Smith, Pocket factors are unlikely to play a major role in the life cycle of Human rhinovirus, J. Virol, vol.81, pp.6307-6315, 2007.

A. K. Patick, S. L. Binford, M. A. Brothers, R. L. Jackson, C. E. Ford et al.,

F. Maldonado, P. S. Dragovich, R. Zhou, T. J. Prins, S. A. Fuhrman et al., In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease, Antimicrob. Agents Chemother, vol.43, pp.2444-2450, 1999.

C. Lacroix, S. George, P. Leyssen, R. Hilgenfeld, and J. Neyts, The Enterovirus, p.3

, protease inhibitor SG85 efficiently blocks Rhinovirus Replication and is not cross-resistant with Rupintrivir, Antimicrob. Agents Chemother, vol.59, pp.5814-5818, 2015.

A. M. De-palma, I. Vliegen, E. De-clercq, and J. Neyts, Selective inhibitors of Picornavirus replication, Med. Res. Rev, vol.6, pp.823-884, 2008.

S. C. Feil, S. Hamilton, G. Y. Krippner, B. Lin, A. Luttick et al., An orally available 3-ethoxybenzisoxazole capsid binder with clinical activity against Human rhinovirus, ACS Med. Chem. Lett, vol.3, pp.303-307, 2012.

V. A. Makarov, H. Braun, M. Richter, O. B. Riabova, J. Kirchmair et al.,

N. Seidel, P. Wutzler, and M. Schmidtke, Pyrazolopyrimidines: Potent inhibitors targeting the capsid of Rhino-and Enteroviruses, ChemMedChem, vol.10, pp.1629-1634, 2015.

J. Kim, Y. K. Jung, C. Kim, J. S. Shin, E. Scheers et al.,

S. B. Han and C. Lee,

J. Neyts and J. Ha,

Y. Jung, A novel series of highly potent small molecule inhibitors of rhinovirus replication, J. Med. Chem, vol.13, pp.5472-5492, 2017.

B. Fois, G. Bianco, V. P. Sonar, S. Distinto, E. Maccioni et al.,

L. Marras, R. Pompei, C. Floris, P. Caboni, and F. Cottiglia, Phenylpropenoids from Bupleurum fruticosum as anti-Human Rhinovirus species A selective capsid binders, J. Nat. Prod, vol.80, pp.2799-2806, 2017.

G. D. Diana, P. Rudewicz, D. C. Pevear, T. J. Nitz, S. C. Aldous et al.,

D. T. Robinson, T. Draper, F. J. Dutko, and C. Aldi, Picornavirus inhibitors: Trifluoromethyl substitution provides a global protective effect against hepatic metabolism, J. Med. Chem, vol.38, pp.1355-1371, 1995.

M. A. Cornebise, J. Atherton, S. Bist, S. Butler, T. P. Grebe et al., Discovery of AZN001: A broad-spectrum capsid-binding human rhinovirus inhibitor, Abstracts of Papers, 252nd ACS National Meeting & Exposition, 2016.

M. Roche, C. Lacroix, O. Khoumeri, D. Franco, J. Neyts et al., Synthesis, biological activity and structure-activity relationship of 4,5-dimethoxybenzene derivatives inhibitor of rhinovirus 14 infection, Eur. J. Med. Chem, vol.76, pp.445-459, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460532

C. Lacroix, J. Querol-audí, M. Roche, D. Franco, M. Froeyen et al., A novel benzonitrile analogue inhibits rhinovirus replication, J. Antimicrob. Chem, vol.69, pp.2723-2732, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460520

L. Da-costa, M. Roche, E. Scheers, A. Coluccia, J. Neyts et al., VP1 crystal structure-guided exploration and optimization of 4,5-dimethoxybenzene-based inhibitors of rhinovirus 14 infection, Eur. J. Med. Chem, vol.115, pp.453-462, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01460664

L. Da-costa, E. Scheers, A. Coluccia, A. Rosetti, M. Roche et al.,

R. Cirilli, C. Mirabelli, R. Silvestri, and P. Vanelle, Heterocyclic pharmacochemistry of new rhinovirus antiviral agents: A combined computational and experimental study, Eur. J. Med. Chem, vol.140, pp.528-541, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01774249

J. Broggi, T. Terme, and P. Vanelle, Organic electron donors as powerful single-electron reducing agents in organic synthesis, Angew. Chem. Int. Ed, vol.53, pp.384-413, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01428063

C. Lacroix, S. Laconi, F. Angius, A. Coluccia, R. Silvestri et al.,

P. Leyssen, In vitro characterisation of pleconaril/pirodavir-like compound with potent activity against rhinoviruses, J. Virol, vol.12, pp.1-6, 2015.

M. G. Rossmann, The structure of antiviral agents that inhibit uncoating when complexed with viral capsids, Antiviral Res, vol.11, pp.3-13, 1989.

M. Kirsch-volders, A. Elhajouji, E. Cundari, . Van, and P. Hummelen, The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction, Mutat Res, vol.392, pp.19-30, 1997.

R. M. Ledford, N. R. Patel, T. M. Demenczuk, A. Watanyar, T. Herbertz et al., VP1 sequencing of all Human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds, J. Virol, vol.78, pp.3663-3674, 2004.

Y. Zhang, A. A. Simpson, R. M. Ledford, C. M. Bator, S. Chakravarty et al.,

A. Demenczuk, T. M. Watanyar, A. Pevear, D. C. Rossmann, and M. G. , Structural and virological studies of the stages of virus replication that are affected by antirhinovirus compounds, J. Virol, vol.78, pp.11061-11069, 2004.

, Small-Molecule Drug Discovery Suite 2015-1, 2017.

G. M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aid. Mol. Des, vol.27, pp.221-234, 2013.

O. Korb, T. Stutzle, and T. E. Exner, PLANTS: application of ant colony optimization to structure-based drug design, Ant colony optimization and swarm intelligence, Proceedings of the 5th International Workshop, 2006.

M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli et al., Lecture Notes in Computer Science, vol.4150, pp.247-258, 2006.

M. P. Jacobson, D. L. Pincus, C. S. Rapp, T. J. Day, B. Honig et al., A Hierarchical Approach to All-Atom Protein Loop Prediction, Proteins: Structure, Function and Bioinformatics, vol.55, pp.351-367, 2004.