T. Verhaeghe, D. Aerts, M. Diricks, W. Soetaert, and T. Desmet, The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity, Appl Microbiol Biotechnol, vol.98, pp.7027-7037, 2014.

L. Bruel, G. Sulzenbacher, C. Tison, M. Pujol, A. Nicoletti et al., a-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities, J Biol Chem, vol.286, pp.40814-40823, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01793279

J. Franceus, D. Pinel, and T. Desmet, Glucosylglycerate phosphorylase, an enzyme with novel specificity involved in compatible solute metabolism, Appl Environ Microbiol, vol.83, pp.1434-1451, 2017.

J. Franceus, L. Decuyper, D. 'hooghe, M. Desmet, and T. , Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase, Appl Microbiol Biotechnol, vol.102, pp.3183-3191, 2018.

J. Qin, R. Li, J. Raes, M. Arumugam, and K. S. Burgdorf, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

I. Sekirov, S. L. Russell, L. C. Antunes, and B. B. Finlay, Gut microbiota in health and disease, Physiol Rev, vol.90, pp.859-904, 2010.

C. L. Boulang-e, A. L. Neves, J. Chilloux, J. K. Nicholson, and M. E. Dumas, Impact of the gut microbiota on inflammation, obesity and metabolic disease, Genome Med, vol.8, 2016.

B. Gericke, M. Amiri, and H. Y. Naim, The multiple roles of sucrase-isomaltase in the intestinal physiology, Mol Cell Pediatr, vol.3, 2016.

W. Van-den-ende, Multifunctional fructans and raffinose family oligosaccharides, Front Plant Sci, vol.247, 2013.

S. Collins and G. Reid, Distant site effects of ingested prebiotics, Nutrients, vol.8, p.523, 2016.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

?. Jane-cek, B. Svensson, and E. A. Macgregor, a-Amylase: an enzyme specificity found in various families of glycoside hydrolases, Cell Mol Life Sci, vol.71, pp.1149-1170, 2014.

E. A. Macgregor, J. , ?. Svensson, and B. , Relationship of sequence and structure to specificity in the a-amylase family of enzymes, Biochim Biophys Acta, vol.1546, pp.1-20, 2001.

M. R. Stam, E. G. Danchin, C. Rancurel, P. M. Coutinho, and B. Henrissat, Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylaserelated proteins, Protein Eng Des Sel, vol.19, pp.555-562, 2006.

D. Aerts, T. F. Verhaeghe, B. I. Roman, C. V. Stevens, and T. Desmet, Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors, Carbohydr Res, vol.346, pp.1860-1867, 2011.

C. Goedl, A. Schwarz, M. Mueller, L. Brecker, and B. Nidetzky, Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase

, Carbohydr Res, vol.343, pp.2032-2040, 2008.

K. De-winter, K. Verlinden, V. Weignerov-a, L. Soetaert, and W. , Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability, Green Chem, vol.15, pp.1949-1955, 2013.

F. De-bruyn, M. Van-brempt, J. Maertens, W. Van-bellegem, and D. Duchi, Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides, Microb Cell Fact, vol.14, p.138, 2015.

T. Verhaeghe, K. De-winter, M. Berland, R. De-vreese, D. 'hooghe et al., Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity, Chem Commun, vol.52, pp.3687-3689, 2016.

M. Kraus, J. Görl, M. Timm, and J. Seibel, Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity, Chem Commun, vol.52, pp.4625-4627, 2016.

R. R. Russell, H. Mukasa, A. Shimamura, and J. J. Ferretti, Streptococcus mutans gtfA gene specifies sucrose phosphorylase, Infect Immun, vol.56, pp.2763-2765, 1988.

T. Koga, K. Nakamura, Y. Shirokane, K. Mizusawa, and S. Kitao, Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides, Agric Biol Chem, vol.55, pp.1805-1810, 1991.

R. N. Trethewey, A. R. Fernie, A. Bachmann, H. Fleischer-notter, and P. Geigenberger, Expression of a bacterial sucrose phosphorylase in potato tubers results in a glucose-independent induction of glycolysis, Plant Cell Environ, vol.24, pp.357-365, 2001.

M. Kim, T. Kwon, H. J. Lee, K. H. Kim, and D. K. Chung, Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme, Biotechnol Lett, vol.25, pp.1211-1217, 2003.

D. Sprogøe, L. A. Van-den-broek, O. Mirza, J. S. Kastrup, and A. G. Voragen, Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis, Biochemistry, vol.43, pp.1156-1162, 2004.

J. Lee, S. Yoon, N. Moon, Y. Moon, and Y. , Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli, Enzyme Microb Technol, vol.39, pp.612-620, 2006.

M. Nishimoto and M. Kitaoka, Identification of the putative proton donor residue of lacto-N-biose phosphorylase, Biosci Biotechnol Biochem, vol.71, pp.1587-1591, 2007.

J. Lee, Y. Moon, N. Kim, Y. Kim, and H. Kang, Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli, Biotechnol Lett, vol.30, pp.749-754, 2008.

J. S. Teixeira, R. Abdi, M. S. Su, and C. Schwab, Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri, Food Microbiol, vol.36, pp.432-439, 2013.

T. Verhaeghe, D. Aerts, M. Diricks, W. Soetaert, and T. Desmet, The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity, Appl Microbiol Biotechnol, vol.98, pp.7027-7037, 2014.

J. Franceus, D. Pinel, and T. Desmet, Glucosylglycerate phosphorylase, an enzyme with novel specificity involved in compatible solute metabolism, Appl Environ Microbiol, vol.83, pp.1434-1451, 2017.

J. Franceus, L. Decuyper, D. 'hooghe, M. Desmet, and T. , Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase, Appl Microbiol Biotechnol, vol.102, pp.3183-3191, 2018.

J. Qin, R. Li, J. Raes, M. Arumugam, and K. S. Burgdorf, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

F. Ramare, J. Nicoli, J. Dabard, T. Corring, and M. Ladire, Trypsindependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro, Appl Environ Microbiol, vol.59, pp.2876-2883, 1993.

J. Dabard, C. Bridonneau, C. Phillipe, P. Anglade, and D. Molle, Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces, Appl Environ Microbiol, vol.67, pp.4111-4118, 2001.

A. Pujol, E. H. Crost, G. Simon, V. Barbe, and D. Vallenet, Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut, FEMS Microbiol Ecol, vol.78, pp.405-415, 2011.

E. H. Crost, E. H. Ajandouz, C. Villard, P. A. Geraert, and A. Puigserver, Ruminococcin C, a new anti-Clostridium perfringens bacteriocin produced in the gut by the commensal bacterium Ruminococcus gnavus E1, Biochimie, vol.93, pp.1487-1494, 2011.

L. Bruel, G. Sulzenbacher, C. Tison, M. Pujol, A. Nicoletti et al., a-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities, J Biol Chem, vol.286, pp.40814-40823, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01793279

M. Aguilera, H. Rakotoarivonina, A. Brutus, T. Giardina, and G. Simon, Aga1, the first alpha-galactosidase from the human bacteria Ruminococcus gnavus E1, efficiently transcribed in gut conditions, Res Microbiol, vol.163, pp.14-21, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267759

M. Cervera-tison, L. E. Tailford, C. Fuell, L. Bruel, and G. Sulzenbacher, Functional analysis of family GH36 a-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont, Appl Environ Microbiol, vol.78, pp.7720-7732, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268089

E. H. Crost, L. E. Tailford, L. Gall, G. , F. M. Henrissat et al., Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent, PLoS One, vol.8, p.76341, 2013.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

M. Lafond, A. Tauzin, V. Desseaux, E. Bonnin, and E. Ajandouz, GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production, Microb Cell Fact, vol.10, p.20, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01793303

D. B. West, C. N. Boozer, D. L. Moody, and R. L. Atkinson, Dietary obesity in nine inbred mouse strains, Am J Physiol, vol.262, pp.1025-1032, 1992.

F. Graziani, A. Pujol, C. Nicoletti, S. Dou, and M. Maresca, Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation, J Appl Microbiol, vol.120, pp.1403-1417, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01475372

M. Rossmeisl, J. S. Rim, R. A. Koza, and L. P. Kozak, Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity, Diabetes, vol.52, pp.1958-1966, 2003.

S. Rabot, M. Membrez, A. Bruneau, P. Harach, and T. , Germfree C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism, Faseb J, vol.24, pp.4948-4959, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204268

J. J. Faith, N. P. Mcnulty, F. E. Rey, and J. I. Gordon, Predicting a human gut microbiota's response to diet in gnotobiotic mice, Science, vol.333, pp.101-104, 2011.

J. Dor-e, A. Sghir, G. Hannequart-gramet, G. Corthier, and P. Pochart, Design and evaluation of a 16S rRNA-targeted oligonucleotide probe for specific detection and quantitation of human faecal Bacteroides populations, Syst Appl Microbiol, vol.21, pp.65-71, 1998.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-858, 2015.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat Methods, vol.8, pp.785-786, 2011.

K. Katoh and M. C. Frith, Adding unaligned sequences into an existing alignment using MAFFT and LAST, Bioinformatics, vol.28, pp.3144-3146, 2012.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res, vol.42, pp.320-324, 2014.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-425, 1987.

E. Zuckerkandl and L. Pauling, Evolutionary divergence and convergence in proteins, pp.97-166, 1965.

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol Biol Evol, vol.30, pp.2725-2729, 2013.

J. Li, H. Jia, X. Cai, H. Zhong, and Q. Feng, An integrated catalog of reference genes in the human gut microbiome, Nat Biotechnol, vol.32, pp.834-841, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195478

L. Tasse, J. Bercovici, S. Pizzut-serin, P. Robe, and J. Tap, Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes, Genome Res, vol.20, pp.1605-1612, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204274

C. Goedl and B. Nidetzky, Sucrose phosphorylase harbouring a redesigned, glycosyltransferase-like active site exhibits retaining glucosyl transfer in the absence of a covalent intermediate, Chembiochem, vol.10, pp.2333-2337, 2009.

. Tauzin, Microbial Genomics, vol.5, 2019.

N. Terrapon, V. Lombard, H. J. Gilbert, and B. Henrissat, Automatic prediction of polysaccharide utilization loci in Bacteroidetes species, Bioinformatics, vol.31, pp.647-655, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01438994

P. O. Sheridan, J. C. Martin, T. D. Lawley, H. P. Browne, and H. M. Harris, Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes, Microb Genom, vol.2, p.43, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01604326

J. J. Ferretti, T. T. Huang, and R. R. Russell, Sequence analysis of the glucosyltransferase A gene (gtfA) from Streptococcus mutans Ingbritt, Infect Immun, vol.56, pp.1585-1588, 1988.

E. Altermann, W. M. Russell, M. A. Azcarate-peril, R. Barrangou, and B. L. Buck, Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM, Proc Natl Acad Sci, vol.102, pp.3906-3912, 2005.

T. Ojala, V. Kuparinen, J. P. Koskinen, E. Alatalo, and L. Holm, Genome sequence of Lactobacillus crispatus ST1, J Bacteriol, vol.192, pp.3547-3548, 2010.

Z. Sun, H. M. Harris, A. Mccann, C. Guo, and S. Argimón, Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera, Nat Commun, vol.6, p.8322, 2015.

Y. Hao, D. Huang, H. Guo, M. Xiao, and H. An, Complete genome sequence of Bifidobacterium longum subsp. longum BBMN68, a new strain from a healthy Chinese centenarian, J Bacteriol, vol.193, pp.787-788, 2011.

S. Wildt, I. Nordgaard, U. Hansen, E. Brockmann, and J. J. Rumessen, A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis, J Crohns Colitis, vol.5, pp.115-121, 2011.

J. Gerritsen, B. Hornung, B. Renckens, S. Van-hijum, . Martins-dos-santos et al., Genomic and functional analysis of Romboutsia ilealis CRIB T reveals adaptation to the small intestine, PeerJ, vol.5, p.3698, 2017.

E. A. Murphy, K. T. Velazquez, and K. M. Herbert, Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk, Curr Opin Clin Nutr Metab Care, vol.18, pp.515-520, 2015.

H. Daniel, A. M. Gholami, D. Berry, C. Desmarchelier, and H. Hahne, High-fat diet alters gut microbiota physiology in mice, ISME J, vol.8, pp.295-308, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204436

. Tauzin, Microbial Genomics, vol.5, 2019.