M. J. Lukey, M. M. Roessler, A. Parkin, R. M. Evans, R. A. Davies et al., Oxygen-Tolerant [NiFe]-Hydrogenases: The Individual and Collective Importance of Supernumerary Cysteines at the Proximal Fe-S Cluster, J. Am. Chem. Soc, vol.133, pp.16881-16892, 2011.

T. Goris, A. F. Wait, M. Saggu, J. Fritsch, N. Heidary et al., A Unique Iron-Sulfur Cluster is Crucial for Oxygen Tolerance of a, Nat. Chem. Biol, vol.7, pp.310-318, 2011.

S. Hartmann, S. Frielingsdorf, A. Ciaccafava, C. Lorent, J. Fritsch et al., Activation by an Isolated Large Subunit of a, NiFe] Hydrogenase. Biochemistry, vol.57, pp.5339-5349, 2018.

P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Relating Diffusion along the Substrate Tunnel and Oxygen Sensitivity in Hydrogenase, Nat. Chem. Biol, vol.6, pp.63-70, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01977629

P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al., Original Design of an Oxygen-Tolerant [NiFe] Hydrogenase: Major Effect of a Valine-to-Cysteine Mutation near the Active Site, J. Am. Chem. Soc, vol.133, pp.986-997, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01977599

A. A. Hamdan, P. Liebgott, V. Fourmond, O. Gutiérrez-sanz, A. L. De-lacey et al., Relation Between Anaerobic Inactivation and Oxygen Tolerance in a Large Series of NiFe Hydrogenase Mutants, Proc. Natl. Acad. Sc, vol.109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01825482

M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer et al., How Escherichia coli Is Equipped to Oxidize Hydrogen under Different Redox Conditions, J. Biol. Chem, vol.285, pp.3928-3938, 2010.

F. Sargent, The Model [NiFe]-Hydrogenases of Escherichia coli. Advances in microbial physiology, vol.68, pp.433-507, 2016.

A. Volbeda, P. Amara, C. Darnault, J. Mouesca, A. Parkin et al., Fontecilla-Camps, J. C. X-ray Crystallographic and Computational Studies of the O 2 -Tolerant [NiFe]-Hydrogenase 1 from Escherichia coli, Proc. Natl. Acad. Sc, vol.109, pp.5305-5310, 2012.

S. E. Beaton, R. M. Evans, A. J. Finney, C. M. Lamont, F. A. Armstrong et al., The Structure of Hydrogenase-2 from Escherichia coli: Implications for H 2 -Driven Proton Pumping, Biochem. J, vol.475, pp.1353-1370, 2018.

A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber et al., FontecillaCamps, J. C. Structural Differences between the Ready and Unready Oxidized States of [NiFe] Hydrogenases, J. Biol. Inorg. Chem, vol.10, pp.239-249, 2005.

M. D. Redwood, I. P. Mikheenko, F. Sargent, and L. E. Macaskie, Dissecting the Roles of Escherichia coli Hydrogenases in Biohydrogen Production, FEMS Microbiology Letters, vol.278, pp.48-55, 2008.

D. A. Skibinski, P. Golby, Y. Chang, F. Sargent, R. Hoffman et al., Regulation of the Hydrogenase-4 Operon of Escherichia coli by the Sigma(54)-Dependent Transcriptional Activators FhlA and HyfR, J Bacteriol, vol.184, pp.6642-6653, 2002.

P. D. Weyman, W. A. Vargas, Y. Tong, J. Yu, P. Maness et al., Heterologous Expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] Hydrogenases in Synechococcus elongatus, PLOS ONE, vol.6, pp.1-8, 2011.

M. Sensi, M. Del-barrio, C. Baffert, V. Fourmond, and C. Léger, New Perspectives in Hydrogenase Direct Electrochemistry. Curr. Op. Electrochem, vol.5, pp.135-145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614142

M. Del-barrio, M. Sensi, C. Orain, C. Baffert, S. Dementin et al., Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels, Acc. Chem. Res, vol.51, pp.769-777, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745738

V. Fourmond, T. Lautier, C. Baffert, F. Leroux, P. Liebgott et al., Correcting for Electrocatalyst Desorption and Inactivation in Chronoamperometry Experiments, Anal. Chem, vol.81, pp.2962-2968, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01825488

V. Fourmond, QSoas: A Versatile Software for Data Analysis, Anal. Chem, vol.88, pp.5050-5052, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414965

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Experimental Approaches to Kinetics of Gas Diffusion in Hydrogenase. Proc. Natl. Acad. Sc, vol.105, pp.11188-11193, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336010

C. Léger, S. Dementin, P. Bertrand, M. Rousset, and B. Guigliarelli, Inhibition and Aerobic Inactivation Kinetics of Desulfovibrio fructosovorans NiFe Hydrogenase Studied by Protein Film Voltammetry, J. Am. Chem. Soc, vol.126, pp.12162-12172, 2004.

M. Pandelia, V. Fourmond, P. Tron-infossi, E. Lojou, P. Bertrand et al., Membrane-Bound Hydrogenase I from the Hyperthermophilic Bacterium Aquifex aeolicus: Enzyme Activation, Redox Intermediates and Oxygen Tolerance, J. Am. Chem. Soc, vol.132, pp.6991-7004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677474

T. E. Crozier and S. Yamamoto, Solubility of Hydrogen in Water, Sea Water, and Sodium Chloride Solutions, Journal of Chemical & Engineering Data, vol.19, pp.242-244, 1974.

, The K m values reported here for the Hyd-1 and Hyd-2 hydrogenases are similar to those obtained previously, vol.7, p.10

A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht et al., Enzyme Electrokinetics: Electrochemical Studies of the Anaerobic Interconversions between Active and Inactive States of Allochromatium vinosum, vol.125, pp.8505-8514, 2003.

V. Fourmond, P. Infossi, M. Giudici-orticoni, P. Bertrand, and C. Léger, Two-Step" Chronoamperometric Method for Studying the Anaerobic Inactivation of an Oxygen Tolerant NiFe Hydrogenase, J. Am. Chem. Soc, vol.132, pp.4848-4857, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677470

, The slopes give a ? 0.71 in eq. 12 of ref. 25, similar to the result obtained with Aquifex aeolicus NiFe hydrogenase

M. Pandelia, P. Infossi, M. T. Giudici-orticoni, and W. Lubitz, The Oxygen-Tolerant Hydrogenase I from Aquifex aeolicus Weakly Interacts with Carbon Monoxide: An Electrochemical and Time-Resolved FTIR Study, Biochemistry, vol.49, pp.8873-8881, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677505

P. H. Wang, R. B. Best, and J. Blumberger, Multiscale Simulation Reveals Multiple Pathways for H 2 and O 2 Transport in a [NiFe]-Hydrogenase, J. Am. Chem. Soc, vol.133, pp.3548-3556, 2011.

P. H. Wang and J. Blumberger, Mechanistic Insight into the Blocking of CO Diffusion in [NiFe]-Hydrogenase Mutants through Multiscale Simulation, vol.109, pp.6399-6404, 2012.

F. Oteri, M. Baaden, E. Lojou, and S. Sacquin-mora, Multiscale Simulations Give Insight into the Hydrogen in and out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. The journal of physical chemistry, vol.118, pp.13800-13811, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01588442

J. Kalms, A. Schmidt, S. Frielingsdorf, P. Van-der-linden, D. Von-stetten et al., Krypton Derivatization of an O 2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport, Angew. Chem. Int. Ed, vol.55, pp.5586-5590, 2016.

J. Kalms, A. Schmidt, S. Frielingsdorf, T. Utesch, G. Gotthard et al., Tracking the Route of Molecular Oxygen in O 2 -Tolerant Membrane-Bound, Proc. Natl. Acad. Sc, vol.115, pp.2229-2237, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01726163

A. Abou-hamdan, B. Burlat, O. Gutiérrez-sanz, P. Liebgott, C. Baffert et al., O 2 -Independent Formation of the Inactive States of NiFe Hydrogenase, Nat. Chem. Biol, vol.9, pp.15-17, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01977594

A. Volbeda, L. Martin, P. P. Liebgott, A. L. De-lacey, and J. C. Fontecillacamps, NiFe]-Hydrogenases Revisited: Nickel-Carboxamido Bond Formation in a Variant with Accrued O 2 -Tolerance and a Tentative Re-interpretation of Ni-SI States, Metallomics, vol.7, pp.710-718, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166115