D. E. Koshland, Application of a theory of enzyme specificity to protein synthesis, Proc Natl Acad Sci, vol.44, pp.98-104, 1958.

E. Fischer, Einfluss der configuration auf die wirkung der enzyme, Ber Dtsch Chem Ges, vol.27, pp.2985-2993, 1894.

K. K. Frederick, M. S. Marlow, K. G. Valentine, and A. J. Wand, Conformational entropy in molecular recognition by proteins, Nature, vol.448, pp.325-329, 2007.

L. Trong and I. , Streptavidin and its biotin complex at atomic resolution, Acta Crystallogr D Biol Crystallogr, vol.67, pp.813-821, 2011.

A. Chilkoti and P. S. Stayton, Molecular-origins of the slow streptavidin-biotin dissociation kinetics, J Am Chem Soc, vol.117, pp.10622-10628, 1995.

O. H. Laitinen, V. P. Hytönen, H. R. Nordlund, and M. S. Kulomaa, Genetically engineered avidins and streptavidins, Cell Mol Life Sci, vol.63, pp.2992-3017, 2006.

D. E. Hyre, Cooperative hydrogen bond interactions in the streptavidinbiotin system, Protein Sci, vol.15, pp.459-467, 2006.

M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, DNA nanoswitches: A quantitative platform for gel-based biomolecular interaction analysis, Nat Methods, vol.12, pp.123-126, 2015.

C. E. Chivers, A streptavidin variant with slower biotin dissociation and increased mechanostability, Nat Methods, vol.7, pp.391-393, 2010.

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Energy landscapes of receptorligand bonds explored with dynamic force spectroscopy, Nature, vol.397, pp.50-53, 1999.

E. L. Florin, V. T. Moy, and H. E. Gaub, Adhesion forces between individual ligandreceptor pairs, Science, vol.264, pp.415-417, 1994.

G. U. Lee, D. A. Kidwell, and R. J. Colton, Sensing discrete streptavidin biotin interactions with atomic-force microscopy, Langmuir, vol.10, pp.354-357, 1994.

E. Evans and K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophys J, vol.72, pp.1541-1555, 1997.

O. K. Dudko, G. Hummer, and A. Szabo, Intrinsic rates and activation free energies from single-molecule pulling experiments, Phys Rev Lett, vol.96, p.108101, 2006.

J. T. Bullerjahn, S. Sturm, and K. Kroy, Theory of rapid force spectroscopy, Nat Commun, vol.5, p.4463, 2014.

J. Teulon, Single and multiple bonds in (strept)avidin-biotin interactions, J Mol Recognit, vol.24, pp.490-502, 2011.

V. T. Moy, E. L. Florin, and H. E. Gaub, Intermolecular forces and energies between ligands and receptors, Science, vol.266, pp.257-259, 1994.

S. M. Sedlak, Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry, PLoS One, vol.12, p.188722, 2017.

F. Rico and V. T. Moy, Energy landscape roughness of the streptavidin-biotin interaction, J Mol Recognit, vol.20, pp.495-501, 2007.

S. Jeney, F. Mor, R. Koszali, L. Forró, and V. T. Moy, Monitoring ligand-receptor interactions by photonic force microscopy, Nanotechnology, vol.21, p.255102, 2010.

F. Pincet and J. Husson, The solution to the streptavidin-biotin paradox: The influence of history on the strength of single molecular bonds, Biophys J, vol.89, pp.4374-4381, 2005.

K. Neupane, Direct observation of transition paths during the folding of proteins and nucleic acids, Science, vol.352, pp.239-242, 2016.

H. Yu, M. Siewny, D. T. Edwards, A. W. Sanders, and T. T. Perkins, Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins, Science, vol.355, pp.945-950, 2017.

F. Rico, L. Gonzalez, I. Casuso, M. Puig-vidal, and S. Scheuring, High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations, Science, vol.342, pp.741-743, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01309044

H. Takahashi, F. Rico, C. Chipot, and S. Scheuring, ?-Helix unwinding as force buffer in spectrins, ACS Nano, vol.12, pp.2719-2727, 2018.

H. Grubmüller, B. Heymann, and P. Tavan, Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force, Science, vol.271, pp.997-999, 1996.

S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten, Molecular dynamics study of unbinding of the avidin-biotin complex, Biophys J, vol.72, pp.1568-1581, 1997.

E. B. Walton, S. Lee, V. Vliet, and K. J. , Extending Bell's model: How force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes, Biophys J, vol.94, pp.2621-2630, 2008.

C. Yuan, A. Chen, P. Kolb, and V. T. Moy, Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy, Biochemistry, vol.39, pp.10219-10223, 2000.

M. J. Abraham, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, vol.1, pp.19-25, 2015.

C. Kutzner, Best bang for your buck: GPU nodes for GROMACS biomolecular simulations, J Comput Chem, vol.36, pp.1990-2008, 2015.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, Proc Natl Acad Sci, vol.93, pp.3477-3481, 1996.

B. Heymann and H. Grubmüller, Dynamic force spectroscopy of molecular adhesion bonds, Phys Rev Lett, vol.84, pp.6126-6129, 2000.

G. Hummer and A. Szabo, Kinetics from nonequilibrium single-molecule pulling experiments, Biophys J, vol.85, pp.5-15, 2003.

D. E. Makarov, Communication: Does force spectroscopy of biomolecules probe their intrinsic dynamic properties?, J Chem Phys, vol.141, p.241103, 2014.

P. Cossio, G. Hummer, and A. Szabo, Kinetic ductility and force-spike resistance of proteins from single-molecule force spectroscopy, Biophys J, vol.111, pp.832-840, 2016.

R. W. Friddle, A. Noy, D. Yoreo, and J. J. , Interpreting the widespread nonlinear force spectra of intermolecular bonds, Proc Natl Acad Sci, vol.109, pp.13573-13578, 2012.

O. K. Dudko, Decoding the mechanical fingerprints of biomolecules, Q Rev Biophys, vol.49, p.3, 2016.

H. Lu and K. Schulten, The key event in force-induced unfolding of Titin's immunoglobulin domains, Biophys J, vol.79, pp.51-65, 2000.

F. Gräter, J. Shen, H. Jiang, M. Gautel, and H. Grubmüller, Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations, Biophys J, vol.88, pp.790-804, 2005.

P. G. Wolynes, Folding funnels and energy landscapes of larger proteins within the capillarity approximation, Proc Natl Acad Sci, vol.94, pp.6170-6175, 1997.

B. Voß, R. Seifert, U. B. Kaupp, and H. Grubmüller, A quantitative model for camp binding to the binding domain of mlok1, Biophys J, vol.111, pp.1668-1678, 2016.

J. Wang and G. M. Verkhivker, Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding, Phys Rev Lett, vol.90, p.188101, 2003.

T. Hohsaka, Position-specific incorporation of dansylated nonnatural amino acids into streptavidin by using a four-base codon, FEBS Lett, vol.560, pp.173-177, 2004.

H. Murakami, T. Hohsaka, Y. Ashizuka, K. Hashimoto, and M. Sisido, Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin, Biomacromolecules, vol.1, pp.118-125, 2000.

J. E. Sader, A virtual instrument to standardise the calibration of atomic force microscope cantilevers, Rev Sci Instrum, vol.87, p.93711, 2016.

F. Sumbul, A. Marchesi, H. Takahashi, S. Scheuring, and F. Rico, High-speed force spectroscopy for single protein unfolding, Nanoscale Imaging: Methods and Protocols, pp.243-264, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01838371

D. Tees, R. E. Waugh, and D. A. Hammer, A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds, Biophys J, vol.80, pp.668-682, 2001.

K. C. Johnson and W. E. Thomas, How do we know when single-molecule force spectroscopy really tests single bonds?, Biophys J, vol.114, pp.2032-2039, 2018.

T. Sauer, Numerical Analysis, 2011.

H. Janovjak, J. Struckmeier, and D. J. Müller, Hydrodynamic effects in fast AFM singlemolecule force measurements, Eur Biophys J, vol.34, pp.91-96, 2005.

J. Alcaraz, Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever, Langmuir, vol.18, pp.716-721, 2002.

V. Hornak, Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins, vol.65, pp.712-725, 2006.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J Chem Phys, vol.79, pp.926-935, 1983.

K. A. Feenstra, B. Hess, and H. Berendsen, Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems, J Comput Chem, vol.20, pp.786-798, 1999.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J Chem Phys, vol.98, pp.10089-10092, 1993.

B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, LINCS: A linear constraint solver for molecular simulations, J Comput Chem, vol.18, pp.1463-1472, 1997.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys, vol.126, p.14101, 2007.
DOI : 10.1063/1.2408420

URL : http://arxiv.org/pdf/0803.4060

L. Verlet, Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys Rev, vol.159, pp.98-103, 1967.

S. Freitag, L. Trong, I. Klumb, L. Stayton, P. Stenkamp et al., Structural studies of the streptavidin binding loop, Protein science: a publication of the Protein Society, vol.6, issue.6, pp.1157-1166, 1997.

K. C. Neuman, T. Lionnet, and J. F. Allemand, Single-Molecule Micromanipulation Techniques, Annual Review of Materials Research, vol.37, issue.1, pp.33-67, 2007.

J. Zhou, Unbinding of the streptavidin-biotin complex by atomic force microscopy: A hybrid simulation study, J. Chem. Phys, vol.125, issue.10, p.104905, 2006.

A. Pierres, D. Touchard, A. M. Benoliel, and P. Bongrand, Dissecting streptavidin-biotin interaction with a Laminar flow chamber, Biophysical Journal, vol.82, issue.6, pp.3214-3223, 2002.

S. Guo, C. Ray, A. Kirkpatrick, N. Lad, and B. B. Akhremitchev, Effects of MultipleBond Ruptures on Kinetic Parameters Extracted from Force Spectroscopy Measurements: Revisiting Biotin-Streptavidin Interactions, Biophysical Journal, vol.95, issue.8, pp.3964-3976, 2008.

D. E. Hyre, Early mechanistic events in biotin dissociation from streptavidin, Nat. Struct. Biol, vol.9, issue.8, pp.582-585, 2002.

S. Freitag, A structural snapshot of an intermediate on the streptavidin-biotin dissociation pathway, Proc. Natl. Acad. Sci. U. S. A, vol.96, issue.15, pp.8384-8389, 1999.

L. F. Milles, K. Schulten, H. E. Gaub, and R. C. Bernardi, Molecular mechanism of extreme mechanostability in a pathogen adhesin, Science, vol.359, issue.6383, pp.1527-1533, 2018.

V. J. O'sullivan, Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin, PLoS ONE, vol.7, issue.4, p.35203, 2012.

X. H. Zhang and V. T. Moy, Cooperative adhesion of ligand-receptor bonds, Biophys. Chem, vol.104, issue.1, pp.271-278, 2003.