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Abstract: The emergence of multidrug resistant bacteria/pathogens has highlighted the need 

for the development of new antibiotics. In this manuscript, we report herein our results dealing 

with the broad spectrum of antibacterial activity against both sensitive and resistant Gram-

negative and Gram-positive bacterial strains of an easily prepared water soluble 

polyaminosterol compound namely claramine A1. We will also demonstrate its peculiar 

mechanism of action (different from all the well-known classes of antibiotics) towards Gram-

negative and Gram-positive bacteria. Finally, due to its low cytotoxicity, this class of molecules 

could constitute an effective response to combat the emergence of multidrug resistant bacteria 

and nosocomial diseases. 

 

Introduction 
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Over the last 75 years, the development of antibiotics has contributed greatly to the increase in 

life expectancy. Unfortunately, as a consequence of both their overuse and natural defense 

mechanisms, multidrug resistance has emerged and has seriously limited the efficacy of 

antibiotic therapy.[1-3] Since 1928, thousands of compounds which target essential pathways 

have been isolated from natural sources. Nevertheless, few classes have been identified since 

1987, and when coupled with the over-prescribing of existing treatments, have led to a drastic 

increase in resistant bacteria. Antibiotic resistance is an issue of great concern that has attracted 

the attention of health agencies, media, and global leaders. More specifically, the WHO, 

European Commission, and CDC have all run public health awareness campaigns to bring 

greater attention to a specific subset of bacteria, named the ESKAPE pathogens, comprised of 

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter spp., which constitute the main cause 

of nosocomial infections throughout the world. In this context, there is an urgent medical need 

for new classes of antimicrobial agents that both target resistant ESKAPE pathogens and be 

refractory to all bacterial resistance mechanisms. These new antibiotics should present the 

following features: (i) a mechanism of action ideally avoiding, but more likely prolonging, the 

rise of antibiotic-resistant strains, (ii) specific targeting of pathogens without affecting the 

commensal microbiota and (iii) overcoming or limiting natural forms of resistance such as the 

formation of biofilms and efflux mechanisms. Bacterial membrane structure constitutes an 

appealing target for the design of new potent antimicrobial agents since it is generally conserved 

among most species of both Gram-negative and Gram-positive bacteria. This is evident in 

Nature as bacteria have developed antimicrobial peptides and other small molecules like the 

polymyxins which target this structural element.[4] Resistance to membrane active compounds 

requires either an increase in efflux pumps or a major change in membrane structure that in turn 

influences the permeability barrier, increasing susceptibility to hydrophobic antibiotics. 
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Polyamino natural products such as squalamine[5,6], ianthelliformisamines (B and C)[7], and 

motuporamines[8] are known to target bacterial cell membranes with modest activity (Figure 1).  

Figure 1. Strategy involved for claramine A1 design 

Thus, we and others were able to demonstrate the importance of the amphiphilicity of the 

molecules as well as the crucial nature of the polyamino group linked to a well-chosen lipophilic 

molecule to encounter interesting antimicrobial activities.[9-12]  

 

Results and Discussion 

Based on our continued interest in squalamine and polyaminosterol derivatives[13-14] we posited 

that the bile acids sterol core could serve as a platform for the design of potent antimicrobial 

compounds. Based on all these considerations, we postulated that we could couple these two 

structural features to design a new class of polyaminosterol compounds. This hypothesis was 

born out in the first derivative disclosed below which we have named claramine A1. Herein, 



 4 

we present the synthesis of novel antimicrobial derivative claramine A1 demonstrating its 

broad-spectrum activity as well as its antibiotic-enhancement properties, and elucidation of its 

unusual mechanism of action against both Gram-positive and Gram-negative bacteria by 

implementing chemical tools to investigate changes in membrane depolarization and 

permeabilization. 

In order to further investigate the interesting biological activity[5] we were interested in 

designing a concise and economical synthesis of squalamine derivatives. Toward this end, 

polyaminosterol parent compound claramine A1 (Figure S1) was prepared in a three-step 

synthesis (33% overall yield) from deoxycholic acid using an efficient stereoselective titanium-

mediated reductive amination that controlled the −stereochemistry at the C-3 position (Figure 

2).  

 

Figure 2. Claramine A1 synthetic pathway  

Claramine A1 was found to be a potent antimicrobial with activity against a wide panel of both 

Gram-positive and Gram-negative bacteria including Multi-Drug Resistant (MDR) pathogens 

(Table 1). Evaluation of the activities of claramine A1 and controls (squalamine and colistin) 

against reference strains was repeated and reproducible, and accurate MICs were obtained. For 

Gram-negative E. coli ATCC 25922 and P. aeruginosa ATCC 27853, MICs were 2, 2, 16 

µg/mL and 8, 8, 4 µg/mL for squalamine, claramine A1, colistin, respectively. For Gram-

positive S. aureus ATCC 25923, MICs were 2, 2, >16 µg/mL for squalamine, claramine A1 

and colistin, respectively. In general, claramine A1 demonstrates antimicrobial activities 

against a large panel of both Gram-positive and negative bacterial strains with MIC values 

varying from 2 to 32 µg/mL (Table 1). 



 5 

 Strains Squalamine 
triflate 

Colistin 
sulfate 

Claramine A1 
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S. aureus (340) 2 >16 2 

S. aureus ATCC25923 2 >16 2 

S. intermedius 1051997 2 >16 8 

B. cereus 7132392 8 >16 8 

E. faecalis 1051997 4 >16 8 

Nocardia spp 2 ND 8 

S. australis sp ND ND 2 

G
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e 
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a
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E. coli AG100 8 4 4 

E. coli ATCC 25922 2 16 2 

E. coli 0157H7 2 16 2 

E. aerogenes EA289 (MDR) 16 16 32 

E. cloacae ATCC 23355 4 4 4 

K. pneumoniae NTLC13443 8 4 8 

K. pneumoniae ST258 8 8 16 

K. pneumoniae NASEY 16 8 32 

P. aeruginosa PA01 16 2 8 

P. aeruginosa PA14 16 4 8 

P. aeruginosa ATCC 27853 8 4 8 

P. aeruginosa PA3337 8 4 8 

A. baumannii ATCC 17978 2 0.5 8 

A. baumannii AYE 8 4 32 

Table 1. Antimicrobial activities of squalamine, colistin and claramine A1 MIC (µg/mL) 
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Claramine A1 exhibited complete killing of the P. aeruginosa reference strain in the same time 

period (3 hours) than colistin (Figure 3B). However, contrary to colistin which is inactive 

against Gram-positive bacteria, claramine A1 showed a rapid direct bactericidal effect against 

the S. aureus reference strain which was favorable when compared to tobramycin, reflected by 

a nearly 2.5 log drop in the counts of this strain by 0.75 h, with complete killing achieved in 2 

hours (Figure 3A). 

 

Figure 3. Time kill studies for claramine A1 against (A) P. aeruginosa ATCC27853 and (B) 

S. aureus ATCC25923  

The first study dealing with the mechanism of action of squalamine against Gram-negative 

bacteria suggested that squalamine amino groups (positively-charged) strongly interact with the 

phosphate groups (negatively-charged) in the lipopolysaccharide (LPS) structure disrupting the 

bacterial membrane integrity.[11] Such a mechanism had been previously described for 

polymyxin antibiotic colistin, which can be antagonized by increased concentrations of Ca2+ 

and Mg2+ divalent cations, which further inhibits the binding of this polycationic antibiotic to 

LPS.[15,16] This result indicates that the interaction with the negatively charged phosphate 

groups in the LPS structure is mandatory for both agents to be active. Although required, the 

cationic charge is not sufficient to cause either the permeabilization of bacterial membranes or 

the bacteria killing.[17,18] On the other hand, Dynamic Light Scattering (DLS) was performed to 

determine whether the compound aggregates demonstrating that samples concentrations (i.e., 
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500 µM, 50 µM, 16 µM and 2 µM) were too low to meet DLS quality criteria, suggesting the 

absence of colloidal aggregates at all tested concentrations (Figure S2).  

Thus, we attempted to elucidate more precisely the mechanism of action of claramine A1 by 

investigating its potent permeabilizing, depolarizing, and disrupting behavior of the outer 

and/or inner membranes of S. aureus ATCC 25923 and E. aerogenes EA289 bacteria, as well 

as its ability to potentially act as an efflux pump inhibitor (Figure 4A). 

 

Figure 4. General points investigated for claramine A1 mechanism of action study against both 

Gram-positive and Gram-negative bacteria 

Squalamine, polymyxin B, and cetyltrimethylammonium bromide (CTAB) were chosen for 

these studies as positive controls whereas claramine A19 (lacking the polyamine) and spermine 

(Sp, lacking the sterol) were selected as inactive compounds to compare their different 

behaviors (Figure 4B). 
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In a first approach, a bioluminescence method was developed to determine the behavior of 

claramine A1 on the intracellular pool of bacterial ATP. The detection of the external 

concentration of ATP was then used as a reporter reflecting the permeabilizing effect of 

claramine A1 along with providing a dose-response curve (Figure 5A). Claramine A1 

dramatically disrupted the S. aureus membrane after two minutes as observed by intracellular 

ATP release kinetics, which was similar to the positive control squalamine. (Figure 5B).  

Figure 5. Dose dependent ATP release for claramine A1 (A) treated S. aureus ATCC 25923 

(B) and E. aerogenes EA289 (C) strains 

Conversely, no significant effect was found by using spermine as a polyamine negative control 

during the test time. By performing the same experiment against Gram-negative E. aerogenes 

EA289 a lower ATP efflux was observed for both Claramine A1 and squalamine with only a 

20 and 10% ATP efflux release compared to CTAB positive control, respectively, hinting at a 

different mechanism of action (Figure 5C). These results suggest that LPS damage induced by 

claramine A1 is clearly greater and faster than that caused by squalamine. Furthermore, this has 

recently been demonstrated in a study on the interaction of squalamine and colistin with the 

bacterial lipid bilayer and the consequences of such interactions on the electrical properties of 

these membranes.[19] Accordingly, the activity of claramine A1 against Gram-negative bacteria 

may be simulated by the carpet model previously proposed for describing cationic peptide 
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antibiotics, which led to a large disruption of the bacterial membrane due to a detergent-like 

effect of micelle formation.[20] However, this model is not valid for Gram-positive bacteria since 

they are devoided of LPS. 

To clarify this alternate mechanism, claramine A1 was investigated for its ability to alter the 

outer membrane integrity of E. aerogenes EA289 via a nitrocefin colorimetric assay wherein a 

color change from yellow to red occurs when the chromogenic ß-lactam is efficiently 

hydrolyzed by periplasmic ß-lactamases. As presented in Figure 6, even at low concentration 

(1.79 µM), claramine A1 increased the rate of nitrocefin hydrolysis compared to the A19-

treated or untreated control. Otherwise, a similar behavior is observed as seen with the positive 

controls polymyxin-B (PMB) and squalamine which also provided an increase in the nitrocefin 

hydrolysis rate. All these data suggest that claramine A1 can permeabilize the outer membrane 

or disrupt the integrity of Gram-negative bacteria. 

 

Figure 6. Study of outer membrane permeabilization of E. aerogenes EA289 by evaluation of 

nitrocefin hydrolysis rate (A-C) and claramine A1 dose dependent effect on nitrocefin 

hydrolysis rate (D). 

On the other hand, efflux systems function via an energy-dependent mechanism (active 

transport) to pump out unwanted substances such as toxins, antibiotics, or dyes through specific 

efflux pumps. To determine if claramine A1 could act as a disruptor of the transmembrane 

potential, we used the membrane potential sensitive probe DiSC3(5) which concentrates at the 

inner membrane level and self-quenches its fluorescence (Figure 7A).  

https://en.wikipedia.org/wiki/Active_transport
https://en.wikipedia.org/wiki/Active_transport
https://en.wikipedia.org/wiki/Antibiotic
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When a compound impairs the membrane potential, the dye is released in the liquid 

environment leading to a fluorescence increase. Thus, a strong depolarization of the membrane 

after 15 minutes of incubation was observed against Gram-positive S. aureus strain both for 

squalamine and Claramine A1 (Figure 7B) whereas EA289 treatment resulted in a lower but 

significant depolarization of the membrane (Figure 7C) suggesting a potent disruption of the 

proton gradient which may affect efflux pumps from the RND family such as AcrAB-TolC.  

 

Figure 7. A-D) Membrane perturbation study of E. aerogenes EA289 and S. aureus ATCC 

25923 by DiSC3(5) fluorescence evaluation. E-F) Study of effect on efflux performance of E. 

aerogenes EA289 by evaluation of glucose-triggered 1,2'-diNA efflux 

Therefore, claramine A1 was tested for its ability to inhibit efflux pumps that are proteinaceous 

transporters localized in the cytoplasmic membrane of bacteria and are active transporters, 

meaning that they require a source of chemical energy to perform their function. (Figure 7E). 

Some efflux systems are drug-specific, whereas others may accommodate multiple drugs, and 

https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Cytoplasmic_membrane
https://en.wikipedia.org/wiki/Active_transport
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thus contribute to bacterial multidrug resistance (MDR). Some are primary active transporters 

utilizing adenosine triphosphate hydrolysis as a source of energy, whereas others are secondary 

active transporters in which transport is coupled to an electrochemical potential difference 

created by pumping hydrogen or sodium ions from or to the outside of the cell. In this context, 

the transport measurement of a known transport substrate, can be used to directly monitor the 

function of efflux pumps. As already mentioned Gram-negative EA289 is a drug resistant 

bacterium overexpressing the AcrAB-TolC pump, which belongs to the RND efflux pumps and 

uses the proton gradient across the inner membrane as an energy source. By loading EA289 

bacteria with the 1,2'-diNA dye which is well known to be a substrate of the AcrAB-TolC efflux 

pump and deenergization by adding CCCP (Figure 7E, step 2), we rendered the bacteria 

fluorescent after incubation. Bacteria were then incubated with claramine A1 (Figure 7E, step 

3) at different concentrations before addition of glucose as an energy source (Figure 7E, step 

4).  

In this case, the active transport of more than 80% of the dye is rapidly observed in non-treated 

bacteria (Figure 7F, green line). When claramine A1 is added to the bacteria, a significant dose-

dependent inhibition is observed resulting in more than 90% retention of the dye at a 

concentration up to 25 µM (Figure 7F, grey line). These results suggest that claramine A1 may 

act as an inhibitor of the AcrAB-TolC efflux pump. It is noteworthy than squalamine presents 

a similar behavior but at a higher concentration (of up to 100 µM) demonstrating the better 

efficiency of claramine A1. 

An alternative strategy to safeguard the efficiency of old existing drugs is using antibiotic 

adjuvants, which can enhance the activity of current drugs and minimize or even directly block, 

resistance.[21-23] This concept of antibiotic adjuvants comes from the successful use of two 

antibiotic combinations such as gentamicin/ampicillin for the treatment of enterococcal 

infections.[24,25] Synergistic interactions are achieved through a variety of mechanisms, 

https://en.wikipedia.org/wiki/Adenosine_triphosphate
https://en.wikipedia.org/wiki/Electrochemical_potential
https://en.wikipedia.org/wiki/Ions
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including enhancement of uptake or suppression of efflux. The result is that efficacy is greater 

than the sum of the individual agents (synergy) with faster kill times and limiting the emergence 

of resistant organisms. Thus, we decided to use claramine A1 as a potent adjuvant in 

combination with various antibiotics based on our recent success using polyamine 

motuporamine derivatives.[6] We investigated whether this polyaminosterol derivative could 

restore the potency of the antibiotic doxycycline at doses below its MIC. In our hands the MIC 

of doxycycline against P. aeruginosa PAO1 and E. aerogenes EA289 was 16 and 40 µg/mL, 

respectively, so we investigated the use of doxycycline at a lower concentration (2 µg/mL, 

corresponding to its pharmacokinetic properties in humans[5]) in the presence of claramine A1. 

We speculated that the polyamine agents would disrupt bacterial membrane integrity and 

enhance antibiotic delivery to the bacteria and thus increase doxycycline potency. Thus, even 

at this low doxycycline concentration, claramine A1 restored doxycycline activity against E. 

aerogenes EA289 and P. aeruginosa PAO1 by using 0.5 and 2 µg/mL, respectively. 

Unfortunately, under the same experimental conditions no synergy was observed for MDR K. 

pneumoniae Nasey and A. baumannii AYE. Nevertheless, chloramphenicol activity can also be 

restored at 2 µg/mL against P. aeruginosa PAO1 by using 4 µg/mL of claramine A1 (Table 2). 

 

Strains 
P. aeruginosa  

PAO1 

E. aerogenes 

EA289 

K. pneumoniae 

NASEY 

A. baumannii 

AYE 

Antibiotica DOX CHL DOX CHL DOX DOX 

A1b 2 4  0.5 60c 45c 30c 

a antibiotic used: DOX: doxycycline, CHL: chloramphenicol. b Concentration of claramine A1 used (µg/mL). c 

Values equivalent to the MIC of claramine A1 against these bacterial strains (cf Table 1) 

Table 2. Concentration of claramine A1 used to restore antibiotics activity against various 

bacterial strains 

The cytotoxic activity of claramine A1 was also investigated. Cell viability was assessed by 

evaluating two different physiological mechanisms: the activity of mitochondrial 

dehydrogenases which cleave the tetrazolium salt WST-1 to formazan, and the ability of 
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lysosomal membranes to concentrate Neutral Red. Results showed that claramine A1 exerted a 

weak cytotoxic activity with an IC50 around 70 µM. No differences could be observed in IC50 

regarding the cell line or the vital dye, suggesting that the cytotoxic activities did not result 

from a specific mechanism but from a global impact on several intracellular targets (Table 3). 

IC50 (µM) as assessed by WST1 vital dye IC50 (µM) as assessed by neutral red vital dye 

CHO HEPG2 MDCK 3T3 Hacat CHO HEPG2 MDCK 3T3 Hacat 

70.1+2.6 81.3+2.6 74.3+11.2 77.4+ 3.8 86.4+3.5 75.3+2.4 79.8+3.4 79.4+6.5 82.6 + 0.7 83.1+5.3.2 

IC50 Inhibitory Concentration 50% (µM)  

Table 3. Cytotoxic activities of claramine A1 

Conversely, claramine A1 was unable to induce micronuclei in CHO-K1 cells with or without 

S9 metabolizing mixture. They indicated that claramine A1 was deprived from direct 

clastogenic/aneugenic activity and that it was not transformed into clastogenic/aneugenic 

metabolites by P450 cytochromes (Table S1).  

Because of its structural resemblance to steroidal detergents, claramine A1 was assayed for 

hemolytic activity against human erythrocytes. This activity occurs at higher concentrations 

than observed for nonselective membrane disruptive amphipathic molecules such as CTAB 

(Figure S3). Thus, 35% haemolysis was observed for claramine A1 used at a 200 µM 

concentration. It is also noteworthy that claramine A1 exerts antibiotic activity at concentrations 

below which erythrocyte disruption occurs. 

Recently, the use of insects has become a method of choice for measuring the virulence 

of microbial pathogens due to the numerous similarities existing between the immune system 

of insects and mammals.[26, 27] Insects are also inexpensive to purchase, house, and led to results 

in 24–48 h. All these reasons rationalize the fact that insects can be used to evaluate the in vivo 

activity of antimicrobial drugs.[28, 29] Thus, Galleria mellonella larvae were used as an animal 

model to determine their tolerance to claramine A1 as well as the in vivo activity of claramine 

A1 against a S. aureus infection. In a first approach, the results indicate no toxicity up to a 
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concentration of 50 µg/mL however larvae inoculate with a dose of 100 µg/mL showed a 90% 

reduction in viability after 24 h. On the other hand, larvae inoculated with claramine A1 (3.125, 

6.25, 12.5, 25 µg/mL) did not show signs of cuticular darkening, an unambiguous sign of acute 

toxicity (Figure 8A). 

 

Figure 8. A) Larval survival 24h after administration with water or claramine A1 (3.125, 6.25, 

12.5, 25, 50, 100, 1000 µg/mL). B) Survival of larvae infected with S. aureus ATCC25923 

following administration with claramine A1 solution (6.25 µg/mL) 4h after infection. 

In order to ascertain the in vivo activity of claramine A1, larvae were infected with S. aureus 

ATCC25923 (20 µL of a solution containing 107 bacterial cells) and subsequently administered 

with or without claramine A1 (6.25 µg/mL) 4h post infection. Those treated larvae showed 80% 

survival at 24h whereas only 10% of the untreated ones survived at the same time point (Figure 

8B). Nevertheless, caution must be exercised in larvae use as the introduction of foreign 

material into the insect haemoceol can provoke a non-specific immune response.[30, 31] 

 

Conclusion  

More broadly, we demonstrated that claramine A1, the first member of a new class of potent 

antimicrobial agents, possesses an unusual multifaceted mechanism of action against both 

Gram-positive and Gram-negative bacteria. Claramine A1 exerts its bactericidal effect in a 

rapid fashion via membrane depolarization against Gram-positive bacteria thereby disrupting 
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its integrity. In contrast, further studies indicate that changes in the transmembrane electrical 

potential in Gram-negative E. aerogenes EA289 are correlated with the permeabilization of the 

cell membranes by claramine A1 leading (or concomitantly facilitating) an altered proton 

homeostasis. Finally, claramine A1 which can disrupt the proton gradient can be considered as 

a new member of the class of efflux pump inhibitors. These bimodal activities, when coupled 

with its synergizing abilities, highlights the enormous potential of this class of compounds to 

fight MDR bacteria. Studies are now underway to improve the activity and cytotoxicity of 

claramine derivatives to provide a potent human therapeutic. 

 

Experimental Section 

All solvents were purified according to reported procedures, and reagents were used as 

commercially available. Methanol, ethyl acetate, dichloromethane, ammonia and petroleum 

ether (35-60 °C) were purchased from SDS and used without further purification. Column 

chromatography was performed on SDS silica gel (70-230 mesh). 1H NMR and 13C NMR 

spectra were recorded in CDCl3 on a Bruker AC 250 spectrometer working at 250 MHz and 63 

MHz, respectively (the usual abbreviations are used: s: singlet, d: doublet, t: triplet, q: 

quadruplet, m: multiplet). Tetramethylsilane was used as internal standard. All chemical shifts 

are given in ppm. 

Synthesis of isopropyl deoxycholate 1 

In a 250 mL two necked round flask was introduced in 70 mL of isopropanol and 30 mL of 

dichloromethane 10 g of deoxycholic acid (0.0255 mol) and 2.2 g of para-toluene sulfonic acid 

(0.013 mol). The mixture was heated at reflux under vigorous stirring for 8 hours. The solvents 

were subsequently removed and 100 mL of dichloromethane was added. The organic phase was 

washed 3 times with 50mL of NHCO3 (10%) solution. The aqueous phases were extracted twice 

with dichloromethane and the combined organic phases were dried over Na2SO4, filtered, and 
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concentrated in vacuo to afford the expected product as a white solid in 90% yield. NMR 1H 

(250 MHz, CDCl3) : δ (ppm) = 4.94 (m, 1H), 3.92 (m, 1H), 3.53 (m, 1H), 2.31-2.09 (m, 2H), 

1.78-0.85 (m, 38H), 0.61 (s, 3H). NMR 13C (63 MHz, CDCl3) : δ (ppm) = 173.68, 72.86, 71.37, 

67.17, 47.99, 47.05, 46.32, 41.95, 36.23, 35.86, 35.17, 35.11, 33.97, 33.38, 31.61, 30.80, 30.20, 

28.49, 27.42, 27.05, 26.01, 23.58, 22.99, 21.70, 17.06, 12.53. 

 

Synthesis of 3-oxo isopropyl deoxycholate 2 

In a 250 mL two necked round flask was introduced in 100 mL of toluene and 50 mL of acetone 

11 g of isopropyl deoxycholate 1 (0.025 mol). 2 equivalents of aluminum tert-butoxide (12.3 

g, 0.050 mol) were subsequently added and stirring was maintained under reflux for 12 hours. 

50 mL of a 2N H2SO4 solution was added and the mixture was stirred for an additional 1 hour.  

The organic phase was washed 3 times of a 2N H2SO4 solution and 50 mL of water. The 

combined organic phases were dried over Na2SO4, filtered, and concentrated in vacuo to afford 

a crude product which was purified by flash chromatography on silica gel (ethylacetate/ 

petroleum ether (1/1)). The expected 3-oxo isopropyl deoxycholate 2 was successfully obtained 

as a white solid in 70% yield. NMR 1H (250 MHz, CDCl3) : δ (ppm) = 5.00 (m, 1H), 4.04 (m, 

1H), 2.46-2.12 (m, 4H), 2.06-0.96 (m, 35H), 0.71 (s, 3H). NMR 13C (63 MHz, CDCl3) : δ (ppm) 

= 212.74, 173.57, 72.98, 67.34, 48.22, 47.59, 46.70, 44.30, 42.33, 37.04, 36.92, 35.87, 35.05, 

34.45, 34.11, 31.76, 31.00, 29.06, 27.40, 26.64, 25.55, 23.58, 22.38, 21.81, 17.42, 12.75. 

 

Synthesis of 3-spermino isopropyl deoxycholate (claramine A1) 

In a 100 mL two necked round flask was introduced 100 mL of methanol. A mixture of the 

ketone 2 (3.5 g, 8 10-3mol), titanium(IV) isopropoxide (7.15 mL, 2.4 10-2 mol), and spermine 

(3.2g, 1.6 10-2 mol) was stirred under argon at room temperature for 24 hours. After cooling the 

flask at -20°C, sodium borohydride (0.9 g, 2.4 10-2 mol) was then added and the resulting 
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mixture was stirred for additional 12 hours. The reaction was then quenched by adding water 

(4 mL). Stirring was continued at room temperature for 1 hour then the reaction mixture was 

filtered over a pad of Celite which was subsequently rinsed with NH4OH and methanol. The 

mixture was concentrated in vacuo to afford the expected crude compound which was purified 

by flash chromatography on silica gel using CH2Cl2/MeOH/NH4OH (32%) 7:3:1 as eluent. The 

expected claramine A1 was obtained as a viscous yellow oil in 52% yield. NMR 1H (250 MHz, 

CD3OD) : δ (ppm) = 4.96 (m, 1H), 3.94 (m, 1H), 2.88-2.46 (m, 13H), 2.39-2.18 (m, 2H), 2.04-

1.12 (m, 40H), 1.01-0.95 (m, 7H), 0.71 (s, 3H). NMR 13C (63 MHz, CD3OD) : δ (ppm) = 

175.66, 74.15, 68.95, 59.06, 50.74, 50.70, 49.30, 48.97, 48.42, 48.27, 47.77, 45.83, 44.08, 

40.78, 37.58, 37.14, 36.82, 35.97, 35.92, 34.94, 34.59, 33.56, 32.72, 32.45, 30.52, 29.98, 28.84, 

28.65, 28.40, 28.29, 27.64, 25.04, 24.10, 22.27, 17.71, 13.37. MS (ESI+): m/z 619.5519 

([M+H]+) 

 

Synthesis of claramine A1 hydrochloride salt 

Claramine A1 is dissolved in a minimum of anhydrous methanol and a anhydrous HCl solution 

in diethylether (2M, 8 equivalents) was slowly added under vigorous. The formed precipitate 

was filtrated, washed with anhydrous diethylether and dried under vacuum. The claramine A1 

hydrochloride salt is obtained in a quantitative yield as a white solid stable to air and moisture. 

 

Determination of minimal inhibitory concentrations 

Antimicrobial activity of the compounds was studied by determination of minimal inhibitory 

concentrations (MIC) according to the NCCLS guidelines M7-A2 using the microbroth dilution 

methods. The bacteria strains were grown on trypticase soy agar (Becton Dickinson) at 37 °C 

for 24h. Inocula were prepared in TCE (tryptone 0.1%, NaCl 8%, wt/vol) by ajusting the 

turbidity at 623 nm to obtain 1-3 105 CFU/mL. 
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Antimicrobial activities of the compounds were determined by using a broth microdilution 

method performed in sterile 96-well microplates. All compounds were solubilized in water at a 

concentration of 10mM and were transferred to each microplate well in order to obtain a two-

fold serial dilution in 100 µL of broth and 100 µL of inoculum containing 2-6 105 CFU of each 

bacterium were added to each well. Some wells were reserved for positive controls and 

inoculum viability. After 24 h incubation, MIC was defined for each agent from duplicate 

observations as the lowest concentration of compound allowing no visible growth. 

 

Time-kill assays 

Time-kill assays were conducted with concentrations corresponding to the MIC value of 

claramine A1, colistin and tobramycin against reference strains of P. aeruginosa ATCC27853 

and S. aureus ATCC25923. Claramine A1, colistin or tobramycin was added to a bacterial 

suspension of approximately 5 × 105 CFU/mL of each bacteria. 2 mL of the tested suspension 

were sampled at 0, 0.5, 1, 2, 3, and 4 h for viable cell counting that was conducted by spiral 

plating on Trypticase Soy Agar medium (bioMérieux, Craponne, France) followed by 

incubation at 37°C for 24 h. 

 

Membrane depolarization assays 

Bacteria were grown in MH broth for 24 h at 37°C and centrifuged at 10000 rpm at 20°C. The 

supernatant was discarded, and the bacteria were washed twice with buffered sucrose solution 

(250 mM) and magnesium sulfate solution (5 mM). The fluorescent dye 3,3′-

diethylthiacarbocyanine iodide was added to a final concentration of 3 µM, and it could 

penetrate bacterial membranes during 1 h of incubation at 37°C. Bacteria were then washed to 

remove the unbound dye before adding compound A1 at different concentrations Compound 

was then added at different concentrations. Fluorescence measurements were performed using 
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a Jobin Yvon Fluoromax 3 spectrofluorometer with slit widths of 5/5 nm. The relative corrected 

fluorescence (RCF) was recorded at time intervals of 0, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 

min. The maximum RCF was that recorded with a pure solution of the fluorescent dye in buffer 

(3 µM). 

 

Nitrocefin hydrolysis assay  

Outer membrane permeabilization was measured using nitrocefin as a chromogenic substrate 

of periplasmic -lactamase. Ten milliliters of MH broth were inoculated with 0.1 mL of an 

overnight culture of EA289 bacteria and grown at 37°C until the OD600 nm reached 0.5. The 

remaining steps were performed at room temperature. Cells were recovered by centrifugation 

(4000 rpm for 20 min) and washed once in 20 mM potassium phosphate buffer (pH 7.2) 

containing MgCl2 (1 mM). After a second centrifugation, the pellet was re-suspended and 

adjusted to a OD600 nm to 0.5. Then, 50 µL of either Polymyxin B (positive control) or the A1 

compound were added to 100 µL of the cell suspension to obtain a final concentration varying 

from 0.98 µM to 500 µM. Fifty microliters of nitrocefin were then added to obtain a final 

concentration of 50 µg/mL. Nitrocefin hydrolysis was monitored spectrophotometrically by 

measuring the increase in absorbance at 490 nm. Assays were performed in 96-well plates using 

a M200 Pro Tecan spectrophotometer. 

 

Glucose-triggered 1,2'-diNA efflux assays 

Bacteria were grown until the stationary phase was reached, collected by centrifugation and re-

suspended at OD600 nm= 0.25 in PPB supplemented with Carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP, 5 μM), and incubated overnight with 1,2'-Dinaphthylamine (1,2'-diNA, 32 

μM) at 37°C. Before addition of the desired compounds at a 100 μM concentration, the cells 

were washed with potassium phosphate buffer (PPB). Glucose (50 mM) was added after 300 s 
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to initiate bacterial energization. Membrane-incorporated 1,2'-diNA was followed by 

monitoring the fluorescence (λex= 370 nm ; λem= 420 nm). Cell suspension was added at 100 

μL/well and the fluorescence read every 30 s at 37°C. An Infinite M200Pro reader (Tecan) was 

used. Assays were performed in Greiner Bio-One 96 well plates, ref 675076 (half area, black 

with solid bottom). 

 

Measurement of ATP efflux 

Squalamine solutions were prepared in doubly distilled water at different concentrations. A 

suspension of growing S. aureus or E. aerogenes (EA289) to be studied in MH broth was 

prepared and incubated at 37°C. 90 µL of this suspension was added to 10 µL of squalamine 

solution and vortexed for 1 second. Luciferin-luciferase reagent (Yelen, France; 50 µL) was 

immediately added to the precedent mix and luminescent signal quantified with an Infinite 

M200 microplate reader (Tecan) for five seconds. ATP concentration was quantified by internal 

sample addition. A similar procedure was done for spermine (100 µg/mL) and for A1 (4 times 

the MIC). 

 

Cytotoxicity assays 

The cytotoxic activities of compounds were assessed on 5 cell lines provided from ATCC-LGC 

Standards Sarl (Molsheim, France): Chinese hamster Ovary cells (CHO-K1), Hepatocellular 

carcinoma cells (HepG2), Canine kidney cells (MDCK), primary mouse embryonic fibroblasts 

(3T3), and immortalized human keratinocytes (Hacat). Cells were maintained in Mc Coy’s 5A 

(CHO) or DMEM (HEPG2, MDCK, 3T3, Hacat) media supplemented with 10% bovine calf 

serum, 2 mM glutamine, and 100 U.mL-1/10 µg.mL-1 penicillin/streptomycin mixtures. For the 

cytotoxicity experiments, they were seeded in 96-well plates and incubated at 37°C in 

humidified atmosphere containing 5% CO2 overnight, then concentrations of compounds were 
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incorporated in triplicate cultures. After a 24-hours incubation period at 37°C, cells were 

submitted to three successive washes in phosphate buffer saline (PBS) and cell viability was 

evaluated by two different vital dyes: 

- A first set of cell cultures was incubated in PBS containing 10% WST-1 for 30 min at 

37°C, 5% CO2. Cell viability was evaluated by the assessment of WST-1 absorbance at 450 nm 

in a microplate spectrophotometer.  

- A second set of cell cultures was placed into Neutral Red medium (50 μg/ml Neutral 

Red in complete medium) and incubated for 3 hours at 37°C, 5% CO2. Then the Neutral Red 

medium was removed and the distaining solution (50% ethanol, 1% acetic acid, 49% distilled 

water; 50 µL per well) was added into the wells. The plates were shaken for 15-20 min at room 

temperature in the dark. Cell viability was evaluated by the assessment of absorbance at 540 

nm in a microplate spectrophotometer.  

Results were expressed as percentages of cell viability about the control (culture medium-only), 

which corresponded to 100% cell viability. Dose-response curves were calculated by non-linear 

regression analysis with TableCurve V2 software. The Inhibitory Concentration 50% (IC50) was 

defined as the concentration of compounds that induced a 50% decrease of viable cells.  

 

In vitro micronucleus assay 

The micronucleus assay was performed on a Chinese Hamster Ovary cell line CHO-K1 (ATCC, 

USA). This cell line was chosen for its rapid cell cycle (doubling time of 24 hours) and its 

genetic stability. It has been validated and accepted for the MNvit test by the OECD. Cells were 

maintained in McCoy's 5A medium supplemented with 10% fetal calf serum, 1 mM glutamine 

and 100-U/mL-10 µg.mL-1 of a mixture of penicillin-streptomycin. They were incubated at 

37°C in 5% CO2.The CHO-K1 cells, suspended in Mac Coys'5A medium, were transferred into 

Labteck wells at a concentration of 100,000 cells/ml, and incubated for 24 hours at 37°C in 
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CO2 (5%). When the test was performed without metabolic activation, the compounds were 

added into cell cultures at concentrations previously defined. A negative control containing 

culture medium, and a positive control containing 0.6 µg/ml of mitomycin C were added. When 

the assay was performed in the presence of metabolic activation, S9 mix metabolizing mixture 

was added to cell cultures at a concentration of 10%. The S9 fraction was made with a 

centrifuged supernatant (9000 x g) of a liver homogenate prepared from male Sprague-Dawley 

rats treated with a single injection of Aroclor 1254 (500 mg kg-1 body weight). The 

metabolizing mixture (S9 mix) contained 10 % S9, 5 mM G6P, 4 mM NADP, 33 mM KCl and 

8 mM MgCl2.Then the compounds were added to the cell cultures at concentrations previously 

defined. A negative control containing culture medium, and a positive control containing 5 

µg/ml of benzo-a-pyrene were added.  After 3 hours of incubation at 37 °C in CO2 (5%), the 

culture medium was removed, the cells were rinsed with phosphate buffered saline (PBS), and 

then returned to culture in McCoy's 5A medium containing 3 µg/ml of cytochalasin B. After a 

21-hour incubation period at 37°C, cells were rinsed with phosphate buffered saline (PBS), 

fixed with methanol and stained with 10% Giemsa for 20 minutes. The analysis of results was 

performed under a microscope at x1000 magnification. The antiproliferative activity of test 

substances was estimated by counting the number of binucleated cells relative to the number of 

mononucleated cells on a total of 500 cells for each dose (250 cells counted per well). The 

proliferation index (Cytokinesis Blocked Proliferative Index CBPI) was calculated using the 

following formula: 

 CBPI =
2 ∗ BI + MONO

500
 

BI : number of binucleated cells 

MONO : number of mononucleated cells 

The cytostasis index (CI%), i.e. the percentage of cell replication inhibition, was calculated 

using the following formula: 
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  CI% : 100- {100x(CBPItest material-1)/(CBPIsolvent control-1)} 

After this step, only the doses inducing a decrease of less than 55+5% of CI% as compared to 

the negative control were considered for counting micronuclei. The rates of micronuclei were 

evaluated for the presence of independent nuclear core entities in 1000 binucleated cells per 

well, which corresponds to 2000 cells examined by test substance dose. Micronuclei were 

identified as small nuclei well differentiated from cell nucleus, stained in the same manner and 

having a diameter less than one third of that of the cell nucleus. Micronuclei rates obtained for 

different doses of test substances were compared to the negative control by a χ2 test. The assay 

was considered positive if: 

- A dose-response relationship was obtained between the rate of micronuclei and the doses 

tested, 

- At least one of these doses induced a statistically significant increase (P < 0.05) in the number 

of micronucleated cells as compared to the negative control. 

 

Inoculation of Galleria mellonella larvae 

Ten larvae of G. mellonella were stored in the dark at 15°C. Larvae of the same age and 

weighing around 0.2 g were inoculated with 20 µL of water containing 5 107 S. aureus cells 

through the last pro-leg using a Myjector U100 insulin syringe (Terumo Europe, Leuven, 

Belgium). 

 

In vivo toxicity assay 

Larvae were injected with 20 µL of claramine A1 solution (31.25, 62.5, 125, 250, 500 or 1000 

µM) or water. Larvae were incubated at 30°C for 24 h prior to quantifying survival. 

 

Effect of claramine A1 on survival of larvae infected with S. aureus  
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Larvae were injected with 20 µL of claramine A1 solution (62.5 µM) 4 h post-inoculation with 

S. aureus. The control consisted of larvae inoculated with S. aureus treated or not with water 

(20µL). Larvae were incubated at 30°C and survival was assessed at 24 h. 
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The synthesis of water soluble polyaminosterol compound namely 

claramine A1 and its broad spectrum of antibacterial activity against 

both sensitive and resistant bacterial strains were reported. The 

peculiar mechanisms of action towards Gram-negative and Gram-

positive bacteria was fully investigated suggesting that this class of 

molecules could constitute one of the most appropriate response 

against the questionable emergence of multidrug resistant bacteria 

 
 

 

 

 


