P. York, U. B. Kompella, and B. Y. Shekunov, Supercritical Fluid Technology for Drug Product Development, Drugs Pharm. Sci. 18 Marcel Dekker, 2004.

J. Fages, H. Lochard, J. J. Letourneau, M. Sauceau, and E. Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol, vol.141, pp.219-226, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01668423

E. Badens, Supercritical Fluid Technology in Pharmaceuticals, Les Techniques de l'Ingénieur, CHV4010en, 2012.

, albumin using supercritical mixtures carbon dioxide + organic solvents, J. Supercrit. Fluids, vol.94, pp.189-197, 2014.

J. Jung, J. Y. Clavier, and M. Perrut, Preparation of inhalable protein particles by SCF emulsion drying, Proceedings of the 6th International Symposium on Supercritical Fluids, pp.1837-1842, 2003.

G. Della-porta, N. Falco, E. Giordano, and E. Reverchon, PLGA microspheres by Supercritical Emulsion Extraction: a study on insulin release in myoblast culture, J. Biomater. Sci. Polym. Ed, vol.24, pp.1831-1847, 2013.

E. Reverchon, R. Adami, S. Cardea, and G. D. Porta, Supercritical fluid processing of polymers for pharmaceutical and medical applications, J. Supercrit. Fluids, vol.47, pp.484-492, 2009.

M. J. Whitaker, J. Ho, O. R. Davies, G. Serhatkulu, S. Stolnik-trenkic et al., The production of protein loaded microparticles by supercritical fluid enhanced mixing and spraying, J. Controlled Release, vol.101, pp.85-92, 2005.

F. Jordan, A. Naylor, C. A. Kelly, S. M. Howdle, A. L. Lewis et al., Sustained release hGH microspheres formulation produced by a novel supercritical fluid technology: in vivo studies, J. Controlled Release, vol.141, pp.153-160, 2010.

C. A. Kelly, S. M. Howdle, A. Naylor, G. Coxhill, L. C. Tye et al., Stability of human growth hormone in supercritical carbon dioxide, J. Pharm. Sci, vol.101, pp.56-67, 2012.

D. R. Perinelli, G. Bonacucina, M. Cespi, A. Naylor, M. Whitaker et al., Evaluation of P(L)LA-PEG-P(L)LA as processing aid for biodegradable particles from gas saturated solutions (PGSS) process, Int. J. Pharmaceut, vol.468, pp.250-257, 2014.

K. Vezzu, D. Borin, A. Bertucco, S. Bersani, S. Salmaso et al., Production of lipid microparticles containing bioactive molecules functionalized with PEG, J. Supercrit. Fluids, vol.54, pp.328-334, 2010.

A. S. Pedro, S. Villa, P. Caliceti, S. A. Vieira-de-melo, E. C. Albuquerque et al., Curcumin-loaded solid lipid particles by PGSS technology, J. Supercrit. Fluids, vol.107, pp.534-541, 2016.

R. Couto, V. Alvarez, and F. Temelli, Encapsulation of Vitamin B2 in solid lipid nanoparticles using supercritical CO 2, J. Supercrit. Fluids, vol.120, pp.432-442, 2017.

M. Pemsel, S. Schwab, A. Scheurer, D. Freitag, R. Schatz et al., Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus, J. Supercrit. Fluids, vol.53, pp.174-178, 2010.

M. Thantsha, T. E. Cloete, F. S. Moolman, and P. W. Labuschagne, Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids, Int. J. Food Microbiol, vol.129, pp.88-92, 2009.

M. Chauvet, M. Sauceau, and J. Fages, Extrusion assisted by supercritical CO 2 : A review on its application to biopolymers, J. Supercrit. Fluids, vol.120, pp.408-420, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01335023

T. Clifford, Fundamentals of Supercritical Fluids, 1999.

X. Q. Bian, Q. Zhang, Z. M. Du, J. Chen, and J. N. Jaubert, A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide, Fluid Phase Equilibr, vol.11, pp.74-80, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01703479

Y. Sato, K. Fujiwara, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures, Fluid Phase Equilibr, vol.162, pp.261-276, 1999.

J. Hao, M. J. Whitaker, B. Wong, G. Serhatkulu, K. M. Shakesheff et al., Plasticization and spraying of poly(DL-lactic acid) using supercritical carbon dioxide: control of particle size, J. Pharm. Sci, vol.93, pp.1083-1090, 2004.

T. Shinkai, K. Ito, and H. Yokoyama, Swelling measurement of polymers in high pressure carbon dioxide using a spectroscopic reflectometer, J. Supercrit. Fluids, vol.95, pp.553-559, 2014.

C. Gutiérrez, J. F. Rodríguez, I. Gracia, A. Lucas, and M. T. García, Modification of polystyrene properties by CO 2 : Experimental study and correlation, J. Appl. Polym. Sci, vol.132, pp.41696-41704, 2015.

I. Tsivintzelis, G. Sanxaridou, E. Pavlidou, and C. Panayiotou, Foaming of polymers with supercritical fluids: a thermodynamic investigation, J. Supercrit. Fluids, vol.110, pp.240-250, 2016.

A. Braeuer, S. Dowy, E. Torino, M. Rossmann, S. K. Luther et al., Analysis of the supercritical antisolvent mechanisms governing particle precipitation and morphology by in situ laser scattering techniques, Chem. Eng. J, vol.173, pp.258-266, 2011.

S. Dowy, E. Torino, S. K. Luther, M. Rossmann, and A. Braeuer, Imaging the supersaturation in high-pressure systems for particle generation, Chem. Eng. J, vol.168, pp.896-902, 2011.

P. W. Labuschagne, S. G. Kazarian, and R. E. Sadiku, In situ FTIR spectroscopic study of the effect of CO 2 sorption on H-bonding in PEG-PVP mixtures, Spectrochim. Acta A, vol.78, pp.1500-1506, 2011.

M. Perrut, Sterilization and virus inactivation by supercritical fluids (a review), J. Supercrit. Fluids, vol.66, pp.359-371, 2012.

S. Marre, Y. Roig, and C. Aymonier, Supercritical microfluidics: opportunities in flowthrough chemistry and materials science, J. Supercrit. Fluids, vol.66, pp.251-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695032

A. Martin and M. J. Cocero, Numerical modeling of jet hydrodynamics mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS), J. Supercrit. Fluids, vol.32, pp.203-219, 2004.

A. Erriguible, C. Neurohr, A. L. Revelli, S. Laugier, G. Fevotte et al., Cocrystallization induced by compressed CO 2 as antisolvent: simulation of a batch process for the estimation of nucleation and growth parameters, J. Supercrit. Fluids, vol.98, pp.194-203, 2015.

F. Kurniawansyah, R. Mammucari, A. Tandya, and N. R. Foster, Scale-up and economic evaluation of the atomized rapid injection solvent extraction process, J. Supercrit. Fluids, vol.127, pp.208-216, 2017.

P. J. Ginty, M. J. Whitaker, K. M. Shakesheff, and S. M. Howdle, Drug delivery goes supercritical, Nanotoday, vol.8, pp.42-48, 2005.

I. Pasquali and R. Bettini, Are pharmaceutics really going supercritical?, Int. J. Pharmaceut, vol.364, pp.176-187, 2008.

J. Guo, X. Jiang, and S. Gui, RNA interference-based nanosystems for inflammatory bowel disease therapy, Int. J. Nanomed, vol.11, pp.5287-5310, 2016.

G. B. Jacobson, E. Gonzalez-gonzalez, R. Spitler, R. Shinde, D. Leake et al., Biodegradable nanoparticles with sustained release of functional siRNA in skin, J. Pharm. Sci, vol.99, pp.4261-4266, 2010.

J. Ge, G. B. Jacobson, T. Lobovkina, K. Holmberg, and R. N. Zare, Sustained release of nucleic acids from polymeric nanoparticles using microemulsion precipitation in supercritical carbon dioxide, Chem. Commun, vol.46, pp.9034-9036, 2010.

T. Okuda, D. Kito, A. Oiwa, M. Fukushima, D. Hira et al., Gene silencing in a mouse lung metastasis model by an inhalable dry small interfering RNA powder prepared using the supercritical carbon dioxide technique, Biol. Pharm. Bull, vol.36, pp.1183-1191, 2013.

P. Gurikov and I. Smirnova, Amorphization of drugs by adsorptive precipitation from supercritical solutions: a review, J. Supercrit. Fluids, vol.132, pp.105-125, 2018.

M. Champeau, J. M. Thomassin, T. Tassaing, and C. Jérôme, Drug loading of polymer implants by supercritical CO 2 assisted impregnation: a review, J. Controlled Release, vol.209, pp.248-259, 2015.

A. Bouledjouidja, Y. Masmoudi, Y. Li, W. He, and E. Badens, Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids, J. Cataract. Refr. Surg, vol.43, pp.1343-1349, 2017.

C. T. Chen, C. A. Lee, M. Tang, and Y. P. Chen, Experimental investigation for the solubility and micronization of pyridin-4-amine in supercritical carbon dioxide, vol.18, pp.173-180, 2017.

R. Thakur and R. B. Gupta, Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process, Int. J. Pharm, vol.308, pp.190-199, 2006.

K. Matsuyama, K. Mishima, K. I. Hayashi, H. Ishikawa, H. Matsuyama et al., Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent, J. Appl. Polym. Sci, vol.89, pp.742-752, 2003.

R. Schreiber, B. Reinke, C. Vogt, J. Werther, and G. Brunner, High-pressure fluidized bed coating utilizing supercritical carbon dioxide, Powder Technol, vol.138, pp.31-38, 2003.

F. Leboeuf, C. Herry, J. Jung, and F. Deschamps, Sirolimus nanoparticles tablets, p.2

, Conference Innovation in Drug Delivery, 3-6 October, p.106, 2010.

S. Careno, O. Boutin, and E. Badens, Drug recrystallization using Supercritical AntiSolvent (SAS) process with impinging jets: effect of process parameters, J. Cryst. Growth, vol.342, pp.34-41, 2012.

E. Weidner, High pressure micronization for food applications, J. Supercrit. Fluids, vol.47, pp.556-565, 2009.

K. Tochigi, T. Namae, T. Suga, H. Matsuda, K. Kurihara et al., Measurement and prediction of high-pressure vapor-liquid equilibria for binary mixtures of carbon dioxide + n-octane, methanol, ethanol, and perfluorohexane, J. Supercrit. Fluids, vol.55, pp.682-689, 2010.

J. M. Fonseca, R. Dohrn, and S. Peper, High-pressure fluid-phase equilibria: experimental methods and systems investigated, Fluid Phase Equilibr, vol.300, pp.1-69, 2005.

E. Carretier, Study of Hydrodynamics in the Precipitation Autoclaves Used for the Supercritical Anti-Solvent (SAS) Process, 2002.

E. Carretier, E. Badens, P. Guichardon, O. Boutin, and G. Charbit, Hydrodynamics of supercritical antisolvent precipitation: characterization and influence on particle morphology, Ind. Eng. Chem. Res, vol.42, pp.331-338, 2003.

E. Badens, O. Boutin, and G. Charbit, Laminar jet dispersion and jet atomization in pressurized carbon dioxide, J. Supercrit. Fluids, vol.36, pp.81-90, 2005.

T. Petit-gas, O. Boutin, I. Raspo, and E. Badens, Role of hydrodynamics in supercritical antisolvent processes, J. Supercrit. Fluids, vol.51, pp.248-255, 2009.

E. Reverchon, E. Torino, S. Dowy, A. Braeuer, and A. Leipertz, Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization, Chem. Eng. J, vol.156, pp.446-458, 2010.

S. Abdelli, Crystallization by Supercritical Anti-solvent Process (SAS): Influence of Operating Conditions on Crystal Polymorphism, 2017.

E. Reverchon and I. D. Marco, Supercritical antisolvent precipitation of Cephalosporins, Powder Technol, vol.164, pp.139-146, 2006.

C. Neurohr, A. Erriguible, S. Laugier, and P. Subra-paternault, Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxennicotinamide, Chem. Eng. J, vol.303, pp.238-251, 2016.

T. Fernández-ponce, Y. Masmoudi, R. Djerafi, L. Casas, C. Mantell et al., Particle design applied to quercetin using supercritical anti-solvent techniques, J. Supercrit. Fluids, vol.105, pp.119-127, 2015.

R. Djerafi, A. Swanpaul, P. Labuschagne, M. L. Kalombo, E. Badens et al., Supercritical antisolvent co-precipitation of Rifampicin and Ethyl cellulose, Eur. J. Pharm. Sci, vol.102, pp.161-171, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524709

Q. Li, D. Huang, T. Lu, J. P. Seville, L. Xing et al., Supercritical fluid coating of API on excipient enhances drug release, Chem. Eng. J, vol.313, pp.317-327, 2017.

A. Tandya, H. Q. Zhuang, R. Mammucari, and N. R. Foster, Supercritical fluid micronization techniques for gastroresistant insulin formulations, J. Supercrit. Fluids, vol.107, pp.9-16, 2016.

M. Tservitas, M. S. Levy, M. Y. Lo-yim, R. D. O'kennedy, P. York et al., The formation of plasmid DNA loaded pharmaceutical powders using supercritical fluid technology, Biotech. Bioeng, vol.72, pp.12-18, 2001.

V. Prosapio, E. Reverchon, and I. Marco, Antisolvent micronization of bovine serum