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LES in a Concentric Annular Pipe: Analysis
of Mesh Sensitivity and Wall Pressure
Fluctuations

S. Bhattacharjee, G. Ricciardi and S. Viazzo

1 Introduction

Annular pipe flows have varied application in the domains of nuclear reactors, heat
exchangers, drilling operations in oil industry etc. The first part of the paper (Sect. 2)
presents a comparison of large eddy simulations (LES) of turbulent flow in a con-
centric annular pipe for 5 different mesh resolutions. Results are compared with
benchmark DNS data. The second part (Sect. 3) presents its interesting application
of pipe flow in the nuclear field. Inside a pressurized water nuclear reactor (PWR)
core, flow-induced vibrations due to spacer grids can cause damage to the structure.
Understanding this behavior is a challenge. Here the effect of a ‘simplified’circular
spacer grid on the vortex induced vibrations of the pipe is investigated. LES was
performed with the CFD code Trio_U [9] which uses a hybrid finite volume based
finite element approach [1]. Simulations were carried out on the Airain and Curie
supercomputers at the Computing Center for Research and Technology (CCRT),
Bruyeres-le-Chatel, France [2].
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2 Mesh Sensitivity Analysis for LES in a Concentric
Annular Pipe

The outer and inner diameters of the pipe were 60 mm and 30 mm respectively. The
radius ratio, i.e., the ratio between the inner and outer radii was 0.5. Water flowed
through the pipe in axial direction. A schematic diagram is shown in Fig. 1. The
hydraulic diameter, defined as HD = 4A f/,,/ Pyver, Was 0.03m where A ¢, is the
surface area of duct cross-section and P,; is the wetted perimeter. The bulk velocity
was 0.298 m/s. Reynolds number based on the bulk velocity and hydraulic diameter
was 8900. The length of the domain was 0.24m, i.e., 8 times hydraulic diameter.

Fully structured tetrahedral meshes were generated with Gmsh [4] and Trio_U’s
internal meshing tool. The grid was more refined near the boundary in radial direc-
tion to study the near-wall behavior (Fig.2). It was uniform in axial and azimuthal
directions. Five different mesh resolutions were considered. Table 1 shows the num-
ber of grid points as well as the grid resolution in wall units in each direction for each
simulation. Figure 3a—f illustrate the stretching of the tetrahedral elements relative
to each other.

Fig. 1 Schematic diagram
of the pipe

Fig. 2 Non-uniform grid
spacing on the radial plane
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Table 1 Grid resolution in wall units for 5 different cases

95

Case Number of grid | AF Af AF Elements CPU time
points (in millions) | (in hours)
(Nr s NO s Nz)
C1 (Coarse) (25, 80, 120) 7.7 9.2 15.3 1.3 4140
C2 (Coarse) (25, 160, 120) 8.8 5.3 17.6 2.7 9315
F1 (Fine) (73, 160, 480) 1.3 5.1 2.4 33 74980
F2 (Fine) (73, 320, 240) 1.3 2.7 4.9 33 111780
UF (Ultra-fine) | (73, 640, 120) 1.3 1.3 9.6 33 74980
(a) (b) (©)
Z
I|
|II
f r
6 | |

(d) (e) ®

Fig. 3 a Axes, b C1 (Coarse), ¢ C2 (Coarse), d F1 (Fine), e F2 (Fine), f UF (Ultra-fine)

Space discretization was done with the second order centered stabilized “EF_stab”
scheme [6] and time discretization with the second order explicit Adams-Bashforth
scheme. The wall-adaptive local eddy viscosity (WALE) model [ 7] was used to model
the universal small scale eddies. In cases where the grid resolution near the wall is
not of order 1, the Reichardt wall law [5] was used.

Due to the regular pattern of the grid, a constant velocity profile as initial condition
was not sufficient to generate turbulence. So a fully developed turbulent flow field
from another simulation (on a coarser mesh) was used as initial condition. Periodic
boundary condition was applied axially. A momentum source term was added to
maintain constant flow rate. Two point correlation coefficient between the velocity
component in the streamwise (axial) direction is plotted in Fig.4. It falls to zero
at half a period suggesting that the streamwise domain length is sufficient. No-slip
condition was imposed on the inner and outer walls.
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Fig. 4 Two point correlation for streamwise velocity
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Fig. 6 a Comparison for fine meshes, b Comparison for coarse meshes

2.1 Results

The turbulent statistics were collected after the flow stabilized. The averaging was
done over 25 flow traversals. For the case F2, standard deviation of radial and axial
velocity was computed as shown in Fig. 5. It is in good agreement with experimental
data of [8]. A comparison of mean velocity profiles for 4 different simulations in
Table 1 is presented in Fig. 6a. Comparison of the coarse C1 profile with F1 shows an
improvement due to the refinement in all directions. The F2 mesh was created with
the same number of elements as F1 but the resolution in azimuth was doubled and
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that in axial was halved. The profile for F2 agrees well with DNS of [3]. UF mesh also
shows similar profile as F2. Hence one could go up to the resolution in wall units of
the order of 101in axial, 3 in azimuthal and 1.3 in radial to reproducing the benchmark
result. It should be noted that the total number of elements was maintained for cases
F1, F2, UF. The above sensitivity analysis shows that the mean velocity profile has a
stronger dependence on azimuthal resolution compared to axial resolution for the 4
said meshes. A similar test was made with the coarse mesh. The azimuthal resolution
in C1 was doubled to create C2 mesh. Again, Fig. 6b shows a significant improvement
in the profile from C1 to C2.

3 Pressure Fluctuations in an Annular Pipe
with a Circular Grid

A realistic PWR core has a square spacer grid. However, creation of a square grid
inside an annular pipe would lead to unstructured mesh (at least in its vicinity if
we implement hybrid meshing). Since the aim is to understand the physics of the
problem, we implemented a circular grid instead. As a result, generation of a fully
structured mesh was possible. Also the domain became symmetric. This improved
the speed of simulation. In order to make it more realistic, the ratio of hydraulic
diameters between the inner and outer flow areas was kept the same for both types
of grids. The pipe with the circular grid is shown in Fig. 7. The length of the domain
was 0.2688 m, i.e., approximately 9 hydraulic diameters.

Table 2 presents the grid resolutions in different directions. An attempt was made
to keep in consideration the acceptable resolutions obtained in Sect.2.1. However,
as seen from Table 2, some compromise had to be made due to lack of computational
time and resources. The domain consisted of 20.7 million tetrahedrons and simulation
was carried out on 710 parallel processors. All numerical parameters were the same
as in Sect. 2 except the boundary conditions at the inlet and outlet. A fully developed

Fig. 7 Annular pipe with CB: pb_main_whole after_restart lata
. . Cycle: D Time:1.70647
circular grid
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Table 2 Grid resolution

Direction Boundary Grid resolution (in wall Grid resolution (in meters)
units)
Radial Inner wall 3.2 0.0003
Outer wall 2.9 0.0003
Circular grid 3.6 0.0003
Azimuthal Inner wall 2.8 0.00026
Outer wall 5.4 0.00055
Circular grid 4.8 0.0004
Axial Inner wall 12.9 0.0012
Outer wall 11.7 0.0012
Circular grid 14.5 0.0012
1072 |
N 10 =
E e Y 'T\\_
@ 106 |
E 108 |
=]
=3
% 10 10 |
E
= 10°12 |
.14 | 78! i .
" 10' 102
frequency Hz

Fig. 8 PSD of instantaneous velocity

turbulent velocity field was injected at the inlet at each time step (from a simultaneous
LES). A constant pressure zero was imposed at the outlet.

3.1 Results

Instantaneous velocity fluctuations were analyzed in terms of power spectral density
(PSD) at 3 heights: 0.6HD upstream, 1 HD downstream and 3HD downstream.
Figure 8 shows that the amplitude of fluctuations 1 HD downstream is a decade higher
than that upstream. At 3HD, the amplitude is reduced but still higher than that
upstream. This increase in fluctuation is due to the presence of the circular spacer
grid. In Fig.9, the PSD of pressure fluctuations on the inner wall of the pipe shows
that the amplitude of fluctuation is higher downstream compared to upstream. The
fluctuations or amplitude of power decrease with frequency. Figure 10 shows an
angular distribution of standard deviation of the pressure field on the inner wall. The
deviation increases by 50% at 1 HD downstream. The symmetric distribution is due
to the symmetry of the grid.
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Fig. 9 PSD of pressure
fluctuations on the inner wall

Fig. 10 Angular distribution
of standard deviation of
pressure on the inner wall

4 Conclusion
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A mesh sensitivity analysis with structured grids was performed in an annular pipe
using LES. Velocity profiles for 5 different meshes were compared with benchmark
DNS, following which an acceptable grid resolution of the order of 10 (axial), 3
(azimuthal) and 1.3 (radial) in wall units was proposed. It was observed that the
results are more sensitive to azimuthal resolution than axial resolution. Presence of
a circular spacer grid in the pipe increased the fluctuation downstream of the grid
as seen from the PSD plots of velocity and wall pressure. As future work, it would
be interesting to repeat the same study with a square spacer grid. Also the grid
resolutions in Table2 could be improved to reach the one discussed in Sect.2.1.
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