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Decaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence
is investigated numerically at large Reynolds numbers thanks to the eddy-damped
quasi-normal Markovian (EDQNM) approximation. Without any background mean
magnetic field, the total energy spectrum E scales as k−3/2 in the inertial range as a
consequence of the modelling. Moreover, the total energy is shown, both analytically
and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic
turbulence: this differs from a previous prediction, and thus physical arguments
are proposed to reconcile both results. Afterwards, the MHD turbulence is made
imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed
for the velocity–magnetic correlation in a general homogeneous framework, which
reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range,
as the Reynolds number increases, the slope of the cross-helical spectrum becomes
closer to k−5/3 than k−2. Furthermore, the Elsässer spectra deviate from k−3/2 with
cross-helicity at large Reynolds numbers. Regarding the pressure spectrum EP, its
kinetic and magnetic parts are found to scale with k−2 in the inertial range, whereas
the part due to cross-helicity rather scales in k−7/3. Finally, the two 4/3rd laws for the
total energy and cross-helicity are assessed numerically at large Reynolds numbers.

Key words: plasma dynamics, plasma nonlinear phenomena, plasma simulation

1. Introduction

For a large variety of astrophysical and geophysical turbulent flows such as in the
interstellar medium and stellar winds, the fluid can be conductive, thus creating a
complex interplay between the magnetic and velocity fields. The dynamics of both
fields can be significantly altered depending on the forcing mechanisms applied or
not to the turbulent flow. A relevant framework to model such configurations is
magnetohydrodynamics (MHD) turbulence, where the two fields are strongly coupled
through the Lorentz force. The MHD framework has been considered multiple times
to describe low frequency solar wind dynamics for instance (Galtier 2009; Boldyrev
et al. 2011).
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In the last decades, multiple configurations have been studied, from isotropic
MHD turbulence (IMHDT) (Pouquet, Frisch & Léorat 1976; Müller & Biskamp
2000; Müller & Grappin 2004; Carati et al. 2006; Yoshimatsu 2012) to strong MHD
where a mean magnetic field renders the flow highly anisotropic (Müller, Biskamp
& Grappin 2003; Müller & Grappin 2005; Mason, Cattaneo & Boldyrev 2008; Perez
& Boldyrev 2009; Boldyrev et al. 2011; Perez et al. 2012), through weak MHD
where the flow tends to be two-dimensional with a dynamics mainly governed by
waves rather than inertial effects (Galtier, Pouquet & Mangeney 2005; Boldyrev
& Perez 2009; Galtier 2009) and quasi-static MHD where only the equation for
the velocity field is considered, with a ohmic term (Favier et al. 2011). Obviously,
the previous list is not exhaustive and several other frameworks exist: see Biskamp
(2003), Galtier (2016) for a review. It appears than even in the simplest case, namely
IMHDT without kinetic and magnetic helicities or a mean magnetic field, two
different inertial scalings are found for the spectrum E(k, t) of the total energy: the
k−3/2 scaling following the phenomenology by Iroshnikov (1964), Kraichnan (1965),
hereafter IK; and the hydrodynamic Kolmogorov (1941) phenomenology yielding a
k−5/3 inertial scaling. This discrepancy is an illustration of the complexity of MHD
turbulence, even in an apparently simple framework: it seems that in some of the
direct numerical simulations (DNS) dealing with fully isotropic MHD, sometimes the
Reynolds numbers is not large enough so that the k−3/2 and k−5/3 inertial scalings
can be hardly distinguished.

A good way to get rid of the Reynolds number limitation could be to use spectral
models, such as the eddy-damped quasi-normal Markovian (EDQNM) approximation
(Orszag 1970). Using an earlier fundamental study (Kraichnan & Nagarajan 1967),
this closure was further extended from hydrodynamics turbulence to isotropic helical
MHD by Pouquet et al. (1976): in the latter work, which also investigates the effect
of kinetic helicity and magnetic helicity, the IK scaling E ∼ k−3/2 is obtained as a
consequence of the modelling choice, along with the inverse cascade of magnetic
helicity in k−2, a feature which will not be addressed here.

Note that both the Iroshnikov (1964) and Kraichnan (1965) approaches yield the
k−3/2 inertial scaling, but it is worth recalling that they use very different arguments.
For the former, a mean magnetic field B0 is considered, thus it is essentially an
anisotropic configuration. Whereas for the latter, no external magnetic field is present,
and it is considered that at each scale λ, the magnetic fluctuations of larger scales
l> λ can be seen as a local mean magnetic field. Both methods provide the inertial
k−3/2 scaling but are fundamentally different. Hence, the vision of Iroshnikov (1964)
may be compatible with DNS results in which E ∼ k−3/2

⊥ (Müller & Grappin 2005;
Boldyrev 2006; Mason et al. 2008; Perez & Boldyrev 2009; Boldyrev et al. 2011;
Perez et al. 2012), where k⊥ is the component of the wavevector k perpendicular to
the imposed mean magnetic field. At variance with this k−3/2

⊥ scaling, Goldreich &
Sridhar (1995) predicts k−5/3

⊥ , and there are arguments and simulations in favour of
this scaling too (Beresnyak 2011, 2014).

Therefore, two questions arise from these considerations. What is the inertial scaling
of E in terms of k⊥ in a anisotropic configuration? And in terms of k in the isotropic
case? Even if the former is of great interest nowadays, studying isotropic MHD
remains important and relevant as indicated by Mininni & Pouquet (2007), namely:
‘in the absence of B0 and for isotropic initial conditions, one may assume that isotropy
is still preserved in the large and intermediate scales’. In addition for IMHDT, it has
been shown (i) in Lee et al. (2010) that the inertial scaling of E strongly depends at
short times on initial parameters; and (ii) in Alexakis (2013), with non-zero magnetic
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helicity, that with distinct helical forcing terms for the velocity and magnetic fields of
various intensities, the resulting kinetic energy spectrum scales more like k−3/2 and the
magnetic energy spectrum more like k−5/3. These two examples further illustrate the
complexity of IMHDT and that there are still open questions and mechanisms to be
understood. This is why in the present work we study isotropic MHD with EDQNM,
without mean magnetic field, to analyse different topics, such as the decay of the
total energy, whose prediction is a fundamental question. The deep understanding of
isotropic MHD is a necessary first step toward the modelling of strong MHD, where
a three-dimensional EDQNM model in terms of k should be analytically derived,
analogously to what exists for rotation (Cambon & Jacquin 1989; Cambon, Mansour
& Godeferd 1997), and this will be reported elsewhere.

As mentioned above, the decay of the total energy K deserves some attention.
Indeed, its prediction remains quite controversial: several decay rates are proposed
with no clear dependence on initial conditions, such as the infrared slope σ of the
spectrum at large scales E(k → 0) ∼ kσ , except the work of Galtier, Politano &
Pouquet (1997) which will be discussed in more detail later. Yet, the total energy
K, defined as the sum of the kinetic energy KV and the magnetic energy KB, is an
inviscid invariant of MHD turbulence and as such deserves great theoretical interest.
If one compares the number of papers dedicated to the decay of kinetic energy in
hydrodynamics turbulence with the ones dedicated to the decay of total energy in
MHD turbulence, the difference is striking. Using EDQNM, we aim at deriving a
theoretical prediction for the decay of K at large Reynolds numbers, similarly to what
was recently done for the helicity and the passive scalar variance in homogeneous
isotropic turbulence (HIT) (Briard et al. 2015; Briard & Gomez 2017).

Moreover, EDQNM permits to analyse in a simple way pressure spectra: in the
framework of HIT and starting from the Poisson equation, it is possible to express
the pressure spectrum as a function of the kinetic energy spectra (Lesieur, Ossia &
Metais 1999; Meldi & Sagaut 2013b). Here for MHD turbulence, there is an additional
contribution of the magnetic field to the Poisson equation, coming from the Laplace
force. Thus, it is proposed to study the respective contributions of the kinetic and
magnetic fields to the total pressure spectrum.

In addition to magnetic helicity (not studied here) and total energy, MHD turbulence
has a third inviscid invariant, namely cross-helicity, which is the scalar product of the
fluctuating velocity and magnetic fields. The first analytical considerations about the
spectral modelling of cross-helicity date back to Frisch et al. (1975). Later, simplified
EDQNM equations were used by Grappin et al. (1982), Grappin, Pouquet & Léorat
(1983) to investigate the influence of cross-helicity on the kinetic and magnetic
energy spectra. The main hypothesis in these two references, on top of the EDQNM
procedure, was to consider equipartition between kinetic and magnetic energies, by
assuming the presence of a mean magnetic field with random orientation, so that
the flow remained statistically isotropic instead of axisymmetric. Thus, it appears
that high Reynolds numbers simulations of the full EDQNM equations for MHD
with cross-helicity were not presented, even though the interest in the cross-helicity
increased in the past years (Chandran 2008; Matthaeus et al. 2008; Beresnyak &
Lazarian 2008; Perez & Boldyrev 2009; Boldyrev et al. 2011). As said earlier,
we choose to address isotropic MHD turbulence here, without a background mean
magnetic field, to further understand the interactions between the cross-correlation and
the kinetic and magnetic fields, and to better disentangle strong anisotropic effects
from intrinsic properties of the velocity–magnetic correlation.

The manuscript is organized as follows. In § 2, the main equations of MHD are
recalled, and the EDQNM formalism for the kinetic, magnetic and cross-helical fields
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is presented. Then, in § 3, balanced isotropic MHD is considered, with zero cross-
correlation: first, inertial scalings of the kinetic, magnetic and residual spectra are
addressed, along with some discussion about nonlinear transfers. Then, the decay of
the total energy is investigated, and theoretical decay exponents are proposed and
assessed numerically. Afterwards, in § 4, the emphasis is put on the modelling of
the cross-helicity, its impact on spectral scalings and short-time dynamics; pressure
spectra are also analysed. Section 5 is dedicated to statistics in physical space, with
in particular the numerical assessment of the 4/3rd laws for total energy and cross-
helicity. Conclusions and perspectives are gathered in the final section.

2. Spectral evolution equations for isotropic MHD turbulence
In this part, the evolution equations of the velocity and magnetic fields are presented

with the spectral formalism: the emphasis is put on the second-order moments. To
this end, the EDQNM approximation is used to close the nonlinear third-order
correlations: some generality is kept in the derivations on purpose. Finally, in the
framework of IMHDT turbulence, the final equations of the spherically averaged
spectra are presented.

2.1. Spectral evolution equations of magnetohydrodynamics
The evolution equation of a conducting fluid of fluctuating velocity ui, submitted to
the Laplace force (magnetic part of the Lorentz force), reads

∂ui

∂t
+ ul

∂ui

∂xl
=−∂p∗

∂xi
+ ν ∂

2ui

∂xl∂xl
+ bl

∂bi

∂xl
+ B0

l
∂bi

∂xl
, (2.1)

where bi is the fluctuating magnetic field, B0 a possible external mean magnetic field,
ν the kinematic viscosity and p∗ the total pressure. Both ui and bi are solenoidal, i.e.
div(u)=div(b)=0. The equation of bi is obtained by combining the Maxwell–Faraday
law, the Ohm law (without the Hall term) and the Maxwell–Ampère law, so that

∂bi

∂t
+ ul

∂bi

∂xl
= bl

∂ui

∂xl
+ B0

l
∂ui

∂xl
+ η ∂

2bi

∂xl∂xl
, (2.2)

where η is the magnetic diffusivity, or resistivity. We choose a unit magnetic Prandtl
number, so that ν = η. When dropping B0 in the latter equation, one remarks that
it is similar to the equation of vorticity ω, which is the so-called Batchelor analogy
(Batchelor 1950). Furthermore, it is worth noting that b is a pseudo-vector like ω,
since it is defined as ∇× a, where the true vector a is the magnetic potential (some
considerations about the modelling of a are proposed in appendix A.1).

The spectral counterpart of (2.1) and (2.2) are given by(
∂

∂t
+ νk2

)
ûi(k)=−iPimn(k) ûmun(k)+ iPimn(k) b̂mbn(k)+ iB0

l klb̂i(k), (2.3)(
∂

∂t
+ ηk2

)
b̂i(k)=−iklb̂iul(k)+ iklûibl(k)+ iB0

l klûi(k), (2.4)

where the Kraichnan operator is given by 2Pimn = kmPin + knPim, with the projector
Pij = δij − αiαj and αi = ki/k, and ˆ(·) denotes the Fourier transform. In homogeneous
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turbulence, the spectral second-order moments of interest, namely the Reynolds tensor
R̂ij, the magnetic tensor B̂ij, and the velocity–magnetic correlation Ĥ

c
ij, are defined as

R̂ij(k, t)δ(k− p)= 〈û∗i (p, t)ûj(k, t)〉, (2.5)

B̂ij(k, t)δ(k− p)= 〈b̂∗i (p, t)b̂j(k, t)〉, (2.6)

Ĥ
c
ij(k, t)δ(k− p)= 〈û∗i (p, t)b̂j(k, t)〉, (2.7)

where (·)∗ denotes the complex conjugate, and 〈·〉 an ensemble average. Their
evolution equations read(

∂

∂t
+ 2νk2

)
R̂ij(k)= TV(hyd)

ij (k)+ TV(mag)
ij (k)+ iB0

l kl

(
Ĥ

c
ij(k)− Ĥ

c∗
ji (k)

)
, (2.8)(

∂

∂t
+ 2ηk2

)
B̂ij(k)= TB(mag)

ij (k)+ iB0
l kl

(
Ĥ

c∗
ji (k)− Ĥ

c
ij(k)

)
, (2.9)(

∂

∂t
+ (ν + η)k2

)
Ĥ

c
ij(k)= Tc

ij(k)+ iB0
l kl
(
R̂ji(k)− B̂ij(k)

)
, (2.10)

where the time dependence has been omitted for clarity. One can note from (2.10) that
in the presence of a mean magnetic field B0, kinetic helicity and magnetic helicity
could produce the cross-correlation Ĥ

c
ij. The nonlinear kinetic transfer TV(hyd)

ij , which
is always present in hydrodynamics turbulence, is the same as in HIT, meaning

T V(hyd)
ij (k, t)= Pimn(k)

∫
Suuu

njm(k, p, t) d3p+ Pjmn(k)
∫

Suuu∗
nim (k, p, t) d3p, (2.11)

where Suuu
ijn is the spectral triple velocity correlation

Suuu
ijn (k, p, t)δ(k+ p+ q)= i〈ûi(q, t)ûj(k, t)ûn(p, t)〉. (2.12)

The nonlinear magnetic transfer T V(mag)
ij represents the retro-action of the magnetic

field on the velocity one through the Laplace force, and reads

T V(mag)
ij (k, t)=−Pimn(k)

∫
Subb

njm(k, p, t) d3p− Pjmn(k)
∫

Subb∗
nim (k, p, t) d3p, (2.13)

where Subb
ijn is the spectral velocity–magnetic–magnetic correlation defined as

Subb
ijn (k, p, t)δ(k+ p+ q)= i〈ûi(q, t)b̂j(k, t)b̂n(p, t)〉. (2.14)

Then, for the magnetic equation, one has

T B(mag)
ij (k, t)= kl

∫ (
Subb∗

jli (p, k, t)+ Subb
ilj (p, k, t)− Subb∗

lji (p, k, t)− Subb
lij (p, k, t)

)
d3p.

(2.15)

Finally, for the cross-helicity, the nonlinear transfer involves two additional three-point
correlations

T c
ij(k, t) = kl

∫ (
Suub∗

lji (p, k, t)− Suub∗
jli (p, k, t)

)
d3p

+Pimn(k)
∫ (

Suub
njm(k, p, t)− Sbbb

njm(k, p, t)
)

d3p, (2.16)
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with

Suub
ijn (k, p, t)δ(k+ p+ q)= i〈ûi(q, t)b̂j(k, t)ûn(p, t)〉, (2.17)

Sbbb
ijn (k, p, t)δ(k+ p+ q)= i〈b̂i(q, t)b̂j(k, t)b̂n(p, t)〉. (2.18)

More details about cross-helical nonlinear transfers are given later in § 4 for
imbalanced MHD.

2.2. EDQNM procedure and eddy damping
In this part, the EDQNM procedure is briefly presented, and more details can be
found in Sagaut & Cambon (2008) for the non-conducting case. The first step is to
express T xxx

ijn , which is the nonlinear transfer in the equation for the triple correlation
Sxxx

ijn , as function of the previous second-order moments thanks to the quasi-normal
approximation, where x stands for either u or b. Then, an eddy-damping term is
used to model the departure of the statistics from normal laws. In hydrodynamics
turbulence, this yields

T uuu
ijn (k, p)= T QN,uuu

ijn (k, p)− (µ1(k)+µ1(p)+µ1(q)) Suuu
ijn (k, p), (2.19)

where T QN,uuu
ijn is the quasi-normal expression of T uuu

ijn , and µ1 is the classical eddy-
damping term

µ1(k, t)= A1

√∫ k

0
x2EV(x, t) dx, A1 = 0.355, (2.20)

with EV the kinetic energy spectrum. This procedure must be repeated in MHD for
T QN,bbb

ijn , T QN,uub
ijn and T QN,ubb

ijn . Using the definitions of the three-point correlations and
the expressions of the nonlinear transfers (2.11)–(2.18) one gets after some algebra

T QN,ubb
ijn (k, p) = 2Pjpq(k)

[
Ĥ

c
pi(q)Ĥ

c
qn(p)− B̂pi(q)B̂qn(p)

]
+ pl

[
R̂lj(k)Bni(q)+ Ĥ

c
li(q)Ĥ

c
jn(−k)− Ĥ

c
ni(q)Ĥ

c
jl(−k)− R̂nj(k)Bli(q)

]
+ ql

[
R̂lj(k)Bin(p)+ Ĥ

c
ln(p)Ĥ

c
ji(−k)− Ĥ

c
in(p)Ĥ

c
jl(−k)− R̂ij(k)Bln(p)

]
,

(2.21)

T QN,uub
ijn (k, p) = 2Pnpq(p)

[
Ĥ

c
pj(k)R̂qi(q)− B̂pj(k)Ĥ

c
iq(−q)

]
+ 2Pipq(q)

[
Ĥ

c
pj(k)R̂qn(p)− B̂pj(k)Ĥ

c
nq(−p)

]
+ kl

[
Ĥ

c
ij(−q)R̂ln(p)+ Ĥ

c
nj(−p)R̂li(q)− Ĥ

c
nl(−p)R̂ji(q)− Ĥ

c
il(−q)R̂jn(p)

]
,

(2.22)

T QN,bbb
ijn (k, p) = kl

[
Ĥ

c
li(q)B̂jn(p)+ Ĥ

c
ln(p)B̂ji(q)− Ĥ

c
ji(q)B̂ln(p)− Ĥ

c
jn(p)B̂li(q)

]
+ pl

[
Ĥ

c
li(q)B̂nj(k)+ B̂ni(q)Ĥ

c
lj(k)− Ĥ

c
ni(q)B̂lj(k)− Ĥ

c
nj(k)B̂li(q)

]
+ ql

[
Ĥ

c
ln(p)B̂ij(k)+ B̂in(p)Ĥ

c
lj(k)− Ĥ

c
in(p)B̂lj(k)− Ĥ

c
ij(k)B̂ln(p)

]
. (2.23)
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The decay of isotropic MHD turbulence 7

These expressions are the most general one can get: only homogeneity was assumed,
not isotropy. They could be simplified by using classical p↔ q symmetry. Hereafter,
isotropic MHD turbulence is considered, so that there is no mean magnetic field
B0. Firstly, in this framework with mirror symmetry invariance, also called isotropic
balanced MHD, the cross-correlation Ĥ

c
ij vanishes so that T QN,uub

imn = T QN,bbb
imn = 0, and

only part of T QN,ubb
imn remains. The kinetic and magnetic helicities, contained in R̂ij

and B̂ij and defined in the following section for generality purposes, are zero as well.
Non-zero cross-helicity is considered in § 4.

Moreover, as intensively discussed in Pouquet et al. (1976), Baerenzung et al.
(2008), an additional eddy-damping term µA should be added to µ1 to take into
account the propagation of Alfvén waves, where

µA(k, t)=
√

2
3

k

√∫ k

0
EB(x, t) dx, (2.24)

where EB is the magnetic energy spectrum. Furthermore EV is replaced in (2.20) by
the total energy spectrum E = EV + EB, linked to the inviscid invariant total energy.
The constant in µA is chosen so that when k→∞, µA is the Alfvén time: µ−1

A =
(kb0)

−1 = τA, where the magnetic energy in IMHDT reads 3b2
0/2.

Combining the quasi-normal approximation, the eddy-damping terms and the
classical Markovianization step to ensure realizability of the spectra in HIT (Orszag
1970; Lesieur 2008; Sagaut & Cambon 2008), it is possible to express the triple
correlations as function of the second-order moments for MHD, thus permitting to
close the evolution equations (2.8)–(2.10)

Sxxx
ijn (k, p, t)= θkpqT QN,xxx

ijn (k, p, t), (2.25)

where θkpq is the characteristic time of the third-order correlations, containing the eddy-
damping terms, according to

θkpq = 1− e−µkpqt

µkpq
, µkpq =µk +µp +µq, µk = (ν + η)k2 +µ1(k)+µA(k).

(2.26a−c)

One can observe in figure 1(a) that µA >µ1 in the entire inertial range, so that µA
−1

becomes the smallest time scale of the problem. The inertial scaling of the total energy
spectrum being determined by the smallest time scale through nonlinear transfers (Lee
et al. 2010), it follows that the choice of µA prescribes the inertial scaling of the total
energy spectrum E: within this isotropic EDQNM modelling, this amounts to E∼ k−3/2

as revealed in § 3. This is also true in the presence of cross-helicity, see later in § 4.
Note that if one does not ensure µA > µ1, realizability is not guaranteed anymore,
meaning that either EV or EB can become negative. Consequently in what follows, we
do not investigate whether one has E ∼ k−3/2 or E ∼ k−5/3 in IMHDT, but rather the
asymptotic results one can obtain from a given inertial scaling.

Moreover, it appears in figure 1(a) that for sufficiently large k, one has µA(k)∼ k,
as expected (Pouquet et al. 1976). Indeed, as previously mentioned, when k→∞,
one has µA' kb0 since

∫∞
0 EB dk= 3b2

0/2. This further illustrates that the Alfvén time
τA = (kb0)

−1 is the characteristic time of the inertial range. Also, in the inertial
range, the classical eddy-damping part µ1 evolves as k3/4, which is consistent
with previous arguments: from its definition (2.20), dimensional analysis yields
µ1 ∼

√
k3E= (εb0k3)1/4: this is different from HIT where µ1 ∼ τ−1

V ∼ (k2εV)
1/3.
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8 A. Briard and T. Gomez

(a) (b)

FIGURE 1. (a) Different contributions in the eddy-damping term µk, defined in (2.26),
of the characteristic time θkpq at Reλ = 6 × 103, along with the integral and dissipative
wavenumbers kL and kMHD

η , defined later on. (b) Total energy spectrum E(k, t), with initial
condition (2.44) and EV(k, t= 0)= 0 at Reλ = 260, compared to spectra obtained in Lee
et al. (2010) with various initial conditions (I6, A6, C6).

2.3. Spherically averaged equations for isotropic MHD
In isotropic MHD turbulence without a mean magnetic field, the solenoidal spectral
tensors R̂ij and B̂ij are decomposed as

R̂ij(k, t)= Pij(k)EV(k, t)+ iεijnαn
HV(k, t)

k
, (2.27)

B̂ij(k, t)= Pij(k)EB(k, t)+ iεijnαn
HB(k, t)

k
, (2.28)

where EV and EB are the kinetic and magnetic energy densities, and HV and HB are
the kinetic and ‘super’ magnetic helicity densities, given by

EV(k, t)= 1
2 R̂ii(k, t), HV(k, t)=− 1

2 iεijlklR̂ij(k, t). (2.29a,b)

The definitions are similar for EB and HB. At this point, it is of importance to precise
that the magnetic helicity HM, which is an inviscid invariant of the MHD equations,
is linked to HB through

HM(t)= 1
2
〈a · b〉 =

∫
k−2HB(k, t) d3k,

1
2
〈 j · b〉 =

∫
HB(k, t) d3k, (2.30a,b)

with j the normalized current density. In the following developments, IMHDT is
considered (with mirror symmetry) so that both HV and HB vanish. Then, the
evolution equations of the energy densities EV and EB read(

∂

∂t
+ 2νk2

)
EV(k, t)= TV(hyd)

E (k, t)+ TV (mag)
E (k, t), (2.31)(

∂

∂t
+ 2ηk2

)
EB(k, t)= TB(mag)

E (k, t), (2.32)

where the nonlinear transfers are given by

TV(hyd)
E (k, t)= 1

2
T V(hyd)

ii (k, t)= Pimn(k)
∫
< (Suuu

nim(k, p, t)
)

d3p, (2.33)
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TV(mag)
E (k, t)= 1

2
T V(mag)

ii (k, t)=−Pimn(k)
∫
< (Subb

nim(k, p, t)
)

d3p, (2.34)

TB(mag)
E (k, t)= 1

2
T B(mag)

ii (k, t)= kl

∫
< (Subb

ili (p, k, t)− Subb
lii (p, k, t)

)
d3p, (2.35)

with < denoting the real part. The final equations for isotropic MHD turbulence are
obtained by spherically averaging the evolution equations (2.31)–(2.32) of EV and EB:
the kinetic energy and magnetic energy spectra are then defined as

EV(k, t)=
∫

Sk

EV(k, t) d2k, EB(k, t)=
∫

Sk

EB(k, t) d2k, (2.36a,b)

where Sk is a sphere of radius k. From the definitions of the kinetic and magnetic
spectra and equations (2.31)–(2.32), one straightforwardly obtains(

∂

∂t
+ 2νk2

)
EV(k, t)= SV(hyd)(k, t)+ SV(mag)(k, t)= SV(k, t), (2.37)(
∂

∂t
+ 2ηk2

)
EB(k, t)= SB(mag)(k, t). (2.38)

The spherically averaged nonlinear kinetic hydrodynamic transfer is

SV(hyd)(k, t) =
∫

Sk

TV(hyd)
E (k, t) d2k

= 16π2
∫
∆k

θkpqk2p2q(xy+ z3)EV ′′
0 (EV ′

0 − EV
0 ) dp dq, (2.39)

with ∆k the domain where k, p and q are the lengths of the sides of the triangle
formed by the triad, and x, y and z are the cosines of the angles formed by p and q,
q and k and k and p. The spherically averaged nonlinear kinetic MHD transfer reads

SV(mag)(k, t) =
∫

Sk

TV(mag)
E (k, t) d2k

= 16π2
∫
∆k

θkpqk2p2qz(1− y2)EB′′
0 (EB′

0 − EV
0 ) dp dq, (2.40)

and the spherically averaged nonlinear magnetic transfer is

SB(mag)(k, t)=
∫

Sk

TB(mag)
E (k, t) d2k

= 16π2
∫
∆k

θkpqk2p2q
(
(xy+ z)EV ′′

0 (EB′
0 − EB

0 )+ z(1− x2)EB′′
0 (EV ′

0 − EB
0 )
)

dp dq,

(2.41)

where EV
0 = EV(k)/(4πk2), EV ′

0 = EV(p)/(4πp2), EV ′′
0 = EV(q)/(4πq2) and similarly for

the magnetic energy spectrum. About the nonlinear transfers: SV(hyd) is conservative,
with zero integral over k, whereas only the sum SV(mag) + SB(mag) is conservative.
The expressions of the two later transfer terms are in agreement with Kraichnan
& Nagarajan (1967), Zhou, Schilling & Ghosh (2002), and there are typo errors in
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Pouquet et al. (1976), Müller & Grappin (2004), Baerenzung et al. (2008). The typos
in the reference paper Pouquet et al. (1976) were corrected in Léorat, Pouquet &
Frisch (1981), precisely pages 441–442 therein.

The kinetic energy and its dissipation rate are given by

KV = 1
2
〈uiui〉 =

∫ ∞
0

EV(k) dk, εV = ν
〈
∂ui

∂xj

∂ui

∂xj

〉
= 2ν

∫ ∞
0

k2EV(k) dk. (2.42a,b)

The magnetic quantities are obtained by changing ()V→ ()B, ui→ bi and ν→ η. Since
only the total energy K = KV + KB is an inviscid invariant of MHD, we define also
the total energy dissipation rate as ε = εV + εB, and the integral scale as

L= 3π

4K

∫ ∞
0

EV(k)+ EB(k)
k

dk. (2.43)

Further information about the evolution equations of the total energy K and total
dissipation ε can be found in appendix B.1.

2.4. Numerical set-up and initial conditions
The time evolution of the kinetic and magnetic spectra EV(k, t) and EB(k, t) is obtained
by solving two coupled integro-differential equations using a third-order Runge–Kutta
scheme with implicit treatment of viscous terms. The wavenumber space is discretized
using a logarithmic mesh ki+1 = rki for i= 1, . . . , n, where n is the total number of
modes and r = 101/f , f = 15 is the number of points per decade. This mesh spans
from kmin = 10−4kL to kmax = 10kη, where kL = 1/L is the integral wavenumber, and
kη = (ε/ν3)1/4 is the Kolmogorov wavenumber. It will be shown hereafter that the
relevant dissipation wavenumber kMHD

η for MHD is smaller than kη. The characteristic
time used for normalization is the eddy turnover time τ0 = K(0)/ε(0). The initial
Reynolds number is varied between 5 × 103 6 Reλ(0) 6 5 × 104 depending on the
cases considered.

The following initial condition is chosen for the magnetic energy spectrum if not
mentioned otherwise

EB(k, t= 0)=CBkσB exp
(
−σB

2
k2
)
, (2.44)

with CB so that
∫∞

0 EB(k, t = 0) dk = 1. The kinetic energy spectrum is initially
either zero, or equal to EB: the following results, and notably the inertial scalings
and decay laws, are not modified asymptotically by choosing different initial relative
intensities between the kinetic and magnetic fields. In both cases, the infrared slope
σB of the magnetic energy spectrum is the large scale initial condition (recall that
in hydrodynamics turbulence, the infrared slopes σV = 2 and σV = 4 for the kinetic
energy spectrum correspond respectively to Saffman and Batchelor turbulence). In
agreement with classical arguments given in Lesieur & Ossia (2000), Lesieur (2008),
if initially zero, EV has an infrared slope σV = 4 once created. If EV = EB initially,
then σV = σB. A particular attention has to be given to the time step. Indeed in MHD,
one needs to take into account the characteristic propagation time of Alfvén waves
τA ∼ (kb0)

−1. This is essential and considerably reduces the time step. Consequently,
even with EDQNM, the duration of the simulations can be rather long at large
Reynolds numbers if one wants to capture several turnover times, but is still much
less than with DNS.
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3. The decay of balanced isotropic MHD turbulence
In the following parts, balanced IMHDT is considered, meaning that the cross-

helicity is zero: 〈u · b〉 = 0. The imbalanced case is addressed in § 4. First, spectral
scalings for the kinetic, magnetic and total energy spectra EV(k, t), EB(k, t) and E(k, t),
are presented within the EDQNM modelling, and compared to spectra obtained in
Lee et al. (2010). The different characteristic time scales involved in the dynamics
and the nonlinear transfers are studied as well. Finally, the decay of the total energy
of the flow is analysed: theoretical predictions are derived and assessed numerically,
which is the most important contribution of this work for balanced MHD. Note that
the scaling of the residual energy spectrum is addressed in appendix A.2.

3.1. Kinetic energy and magnetic spectra EV(k, t) and EB(k, t)

The phenomenological arguments given by Kraichnan (1965) to derive the k−3/2

isotropic inertial scaling are first briefly recalled. Unlike HIT where the local time
of the cascade is τV = (k3EV)

−1/2, the characteristic transfer time τtr of energy in
MHD is longer. This MHD transfer time τtr can be seen as the characteristic time of
waves packet distortion, and is linked to the characteristic Alfvén time τA ∼ (kb0)

−1

which reflects the duration of interactions between two counter-propagating Alfvén
waves. Indeed, in Kraichnan’s phenomenology, the transfer of energy at a scale
l ∼ k−1 results from the cumulative effects of multiple interactions and collisions
between counter propagating Alfvén wave packets, which evolve along the magnetic
field of scales larger than l. Consequently, the transfer time in MHD turbulence is
τtr = τ 2

V/τA ∼ lb0/u2 (Pouquet 1996; Gomez, Politano & Pouquet 1999; Galtier 2016),
unlike HIT where τtr= τV ∼ l/u. From these considerations, one can express the total
energy dissipation rate ε as the ratio of the local square velocity u2 ∼ (kE) to the
transfer time according to

ε ∼ kE(k)
τtr
∼ kE(k)τA

τ 2
V
∼ kE(k)(kb0)

−1

(k3E)−1
= k3b−1

0 E(k)2, (3.1)

so that one has in the inertial range

E(k, t)=CIK

√
εb0 k−3/2. (3.2)

This scaling is referred to as the Iroshnikov–Kraichnan (IK) one, and this analysis also
gives that EV and EB have a k−3/2 inertial scaling like E. The constant is found here
to be of order 26CIK6 3 for 1036 Reλ∼ 104, which is higher than the Kolmogorov
constant in HIT, and this feature is in agreement with Beresnyak (2011).

Within the isotropic EDQNM framework, the k−3/2 scaling is a consequence of the
choice of the additional eddy-damping term µA defined in (2.24). This is illustrated
in figure 2 for σB = 2. Note that the k−3/2 inertial scaling also holds for E+ and E−
associated with the Elsässer variables z±=u±b. The kinetic energy spectrum, initially
zero in figure 2, is created within the first turnover time by SV(mag), with an infrared
slope σV = 4, and consequently experiences a backscatter of energy (Lesieur & Ossia
2000). Whereas at large scales the magnetic spectrum scales with EB∼ k2. Two other
cases (σB = 4 with EV = 0; σB = 2 with EV = EB) presented in appendix A.2 show
that the k−3/2 inertial scaling is independent of initial conditions after a few turnover
times. This notably implies that the inertial scaling does not depend on the kinetic to
magnetic energy ratio KV/KB, which only slightly varies with initial conditions (see
later figure 11(d)).
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(a) (b)

FIGURE 2. Time evolution of the kinetic energy and magnetic energy spectra EV(k, t)
and EB(k, t) for σB = 2, from t= 0 to t= 103τ0, with initially EV = 0. (a) Kinetic energy
spectrum EV(k, t). (b) Magnetic energy spectrum EB(k, t).

This k−3/2 scaling for EV and EB is in agreement with numerical simulations of
IMHDT (Grappin et al. 1982; Mininni & Pouquet 2007; Yoshimatsu 2012). However,
still in the isotropic case, some studies report rather a Kolmogorov k−5/3 inertial
scaling, at odds with the previous IK k−3/2 inertial scaling (Müller & Biskamp 2000;
Müller & Grappin 2004, 2005; Alexakis, Mininni & Pouquet 2005). Finally, in some
cases both scalings are possible (Haugen, Brandenburg & Dobler 2004; Lee et al.
2010; Alexakis 2013), depending on the Reynolds number, the possible forcing terms
and initial parameters. The total energy spectrum E(k, t), obtained with EDQNM
and the initial condition (2.44) with EV(k, t = 0) = 0, is presented in figure 1(b) at
moderate Reynolds numbers, and compared to spectra obtained by Lee et al. (2010)
for different initial conditions. One can see that at Reλ = 260, the difference between
the k−5/3 and k−3/2 inertial scalings is quite subtle. Above all, our spectrum E is
consistently contained between the different DNS results, obtained after six turnover
times, thus showing some quantitative good agreement between EDQNM and DNS.

3.2. Spectral kinetic and magnetic nonlinear transfers
The emphasis is now put on the nonlinear transfers of kinetic and magnetic energies.
It is firstly observed in figure 3(a) that all kinetic and magnetic spherically averaged
nonlinear transfer terms bring energy from large to small scales, in agreement with
Alexakis et al. (2005). The fluxes, computed according to Π(k)=− ∫ k

0 S(p) dp, reveal
several important features:

(i) The purely hydrodynamic isotropic kinetic flux ΠV(hyd) is conservative.
(ii) The magnetic part ΠV(mag) of the total kinetic flux ΠV=ΠV(hyd)+ΠV(mag) is not

conservative, so that ΠV is not.
(iii) The total magnetic flux Π (mag) =ΠB(mag) +ΠV(mag) is conservative, in agreement

with pioneering developments in Kraichnan & Nagarajan (1967).
(iv) Finally, consistently with the total energy being an inviscid invariant, the total

flux ΠV(tot) =ΠV(hyd) +ΠV(mag) +ΠB(mag) is conservative.

One can remark in figure 3(a) that the dissipative wavenumber displayed is not
the Kolmogorov wavenumber kη = (εV/ν

3)1/4, but its equivalent for MHD turbulence,
namely kMHD

η (Biskamp & Welter 1989; Diamond & Biskamp 1990; Pouquet 1996).
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(a) (b)

FIGURE 3. Kinetic and magnetic normalized nonlinear transfers and fluxes, at Reλ '
104, for σB = 2, along with the integral and dissipative wavenumbers kL, and kMHD

η . (a)
Kinetic SV(hyd) + SV(mag) = SV and magnetic S(mag) = SV(mag) + SB(mag) nonlinear transfers. (b)
Corresponding kinetic and magnetic fluxes.

This characteristic wavenumber is obtained by equating (νkMHD
η

2
)−1 and τtr(kMHD

η ) =√
b0/εkMHD

η , so that

kMHD
η =

(
ε

b0ν2

)1/3

. (3.3)

The fact that kMHD
η is more relevant than kη in MHD turbulence is illustrated in

figure 11 in appendix A.2.

3.3. Decay of the total energy K(t)
In this part, the decay of the total energy K =KV +KB in isotropic MHD turbulence,
which evolves according to dK/dt = −ε is addressed. One can define the algebraic
time exponents α and αL as K ∼ tα and L ∼ tαL , where L is the total integral scale,
defined in (2.43). It is assumed for the developments hereafter that the kinetic and
magnetic integral scales evolve similarly, which is assessed numerically. From figure 2
and the IK scaling (3.2), it was shown that in the inertial range, the total energy
spectrum scales in E = EV + EB ∼

√
εb0k−3/2. Secondly, at large scales, the infrared

slope of E is the one of the most energetic (smallest infrared slope) spectrum: given
the initial conditions (2.44) chosen here, one has E∼ kσ−p, with σ =σB, and where p is
a backscatter parameter which accounts for strong inverse transfers in hydrodynamics
Batchelor turbulence (Lesieur & Ossia 2000; Meldi & Sagaut 2013a; Briard et al.
2015).

The prediction of the decay of the total energy in MHD turbulence was addressed
in several papers (Hossain et al. 1995; Pouquet 1996; Galtier et al. 1997, 1999;
Kalelkar & Pandit 2004; Banerjee & Jedamzik 2004). Since in Hossain et al. (1995)
the infrared slopes of the spectra are not considered, we rather focus on the other
references. Notably, in Galtier et al. (1997), the predictions are, for the total energy
and the integral scale,

α =−σ + 1
σ + 2

, αL = 1
σ + 2

. (3.4a,b)

These predictions were assessed in two-dimensional simulations in Galtier et al. (1997)
within the first 10 turnover times, and are further analysed in Galtier et al. (1999). One
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of the conclusions of these theoretical decay exponents is that MHD turbulence decays
more slowly than non-magnetic isotropic turbulence. This is nevertheless at odds with
Banerjee & Jedamzik (2004), where stronger decay rates for the kinetic and magnetic
energies are obtained, closer to HIT predictions than (3.4).

However, two-dimensional turbulence might be more representative of strong
MHD turbulence, where the cascade of energy occurs preferentially in the direction
perpendicular to the mean magnetic field B0, than isotropic MHD turbulence with
no mean magnetic field. In this view, we propose new theoretical time exponents for
the total energy and the integral scale in IMHDT. The method is similar to what is
done in HIT (George 1992), and extended to MHD in Pouquet (1996), Galtier et al.
(1997).

First, for a total energy spectrum scaling in E∼ kσ−p at large scales, the total energy
evolves as K ∼ L−(σ−p+1) ∼ t−αL(σ−p+1), with L∼ tαL . Since K ∼ tα, one gets

α =−(σ − p+ 1)αL. (3.5)

This relation, also verified in HIT, is given in Galtier et al. (1997) without the
backscatter parameter p. The second step is to link the decay exponent α − 1 of
the total dissipation rate ε to the expression (3.5). In HIT, one uses εV ∼ u3/LV
(George 1992). For MHD turbulence, (3.1) is used instead, with τtr = Lb0/u2, so that
ε ∼ u4/(Lb0). From this point, our development differs from Galtier et al. (1997): in
the latter reference, b0 ∼ B0 is independent of time and might reflect a background
mean magnetic field. This gives α = αL − 1 so that (3.4) is recovered.

On the contrary, we claim that in isotropic MHD turbulence without mean magnetic
field, b0=√2KB/3 varies with time because the magnetic energies does. Furthermore,
we assume that total, kinetic and magnetic energies, have the same asymptotic decay
exponent α, even if they have different intensities, so that b0 ∼ tα/2. This provides
αL = 1+ α/2. Combined with (3.5), this eventually yields our theoretical predictions
for the decay of the total energy and integral scale in isotropic MHD turbulence

αL = 2
σ − p+ 3

, α =−2
σ − p+ 1
σ − p+ 3

,

{
p(σ = 4)= 1/3,
p(σ 6 3)= 0.

(3.6a−c)

The striking feature is that these predictions are identical to the predictions for
kinetic energy in HIT (Meldi & Sagaut 2013a; Briard et al. 2015), despite the
non-Kolmogorov scaling of both EV(k, t) and EB(k, t). Only the backscatter parameter
p is changed for σ = 4 from p= 0.55 in HIT to p= 1/3 in IMHDT, which is a rather
small difference. These theoretical decay rates span from −1 for σ = 1 to −1.4 for
σ = 4: these values are closer to the three-dimensional simulations of Banerjee &
Jedamzik (2004) than the two-dimensional ones of Galtier et al. (1997). Note that our
prediction (3.6) is in agreement with the self-similar analysis of Campanelli (2016).

These new predictions for K and L are successfully assessed numerically in
figure 4 for σB = 2 and σB = 4. Supplementary simulations revealed that both the
decay exponents of kinetic energy αV and magnetic energy αB are in agreement with
(3.6) for the different initial conditions investigated in appendix A.2: in particular, if
σB = σ = 2 and σV = 4, one has still αV = αB = α since the large scale dynamics is
driven by the magnetic field. Also, even though not presented here, we obtained that
(i) the decay exponent α of the total energy follows the usual predictions for kinetic
energy in HIT at low Reynolds numbers as well; (ii) in the saturated case where
kmin/kL(0) = 1, one has K ∼ t−2, like kinetic energy in HIT (take σ →∞ in (3.6));
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(a) (b)

FIGURE 4. Time exponents α and αL of the total energy K and integral scale L for
σ = 2 (black) and σ = 4 (grey), with initial conditions (2.44). Lines represent the present
simulations, and symbols the theoretical predictions (3.6); © for α and � for αL. (a) Total
energy (——); see appendix A.2 for the decay exponent αR of residual energy (−−). (b)
Integral scale growth.

and (iii) the value of α, for a given σ , is independent of the kinetic to magnetic
energy ratio KV/KB.

Some additional features should be pointed out about (3.6): first, for σ = 1, one has
K ∼ t−1, a decay rate discussed in Hossain et al. (1995), Galtier et al. (1997), and
which is in agreement with a different approach (Kalelkar & Pandit (2004), equation
(11) therein, for q = 1, E ∼ kq). Furthermore, these theoretical decay exponents are
fully consistent with the IK scaling (3.2): indeed, the continuity of the total energy
spectrum in kL = 1/L gives

kσ−p+3/2
L ∼

√
εb0 ∼

√
ε(KB)

1/4, (3.7)

from which (3.6) directly follows.
In this section, it has been shown that the total energy decays in isotropic MHD

similarly to kinetic energy in HIT, with a slight difference due to inverse nonlinear
transfers only when σ = 4. This prediction, assessed numerically, is an important
finding of the present work, and strongly differs from the predictions by Galtier et al.
(1997), essentially because we insisted on the fact that b0 varies with time, which is
a reasonable statement in the absence of a mean magnetic field.

4. Imbalanced isotropic MHD turbulence
In this section, the emphasis is put on the spectral modelling of the velocity–

magnetic correlation Ĥ
c
ij(k) = 〈û∗i (k)b̂j(k)〉, which corresponds to 〈ui(x)bj(x + r)〉 in

physical space, with r the separation vector. Some fundamental results about spectral
modelling are firstly exposed, and then the nonlinear transfer terms associated with
cross-helicity are computed within the EDQNM framework. Finally, numerical results
of decaying MHD turbulence with an initial non-zero cross-helicity are presented, i.e.
imbalanced isotropic MHD without a mean magnetic field, in order to identify the
impact of the cross-correlation on the scalings of EB(k, t) and EV(k, t), and on the
decay of K. Pressure spectra are addressed as well. It is worth mentioning that such
a framework of non-zero cross-helicity without mean magnetic field was also briefly
addressed in Wan et al. (2012).
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4.1. Modelling of the spectral cross-correlation Ĥ
c
ij

Helical decompositions of the spectral fluctuating velocity and magnetic fields are
firstly considered, i.e.

ûi(k)= u+(k)Ni(k)+ u−(k)N∗i (k), b̂i(k)= b+(k)Ni(k)+ b−(k)N∗i (k), (4.1a,b)

where Ni are the helical modes (Cambon & Jacquin 1989) which verify kiNi = 0,
NiNi = 0 and Ni(−k)= N∗i (k). Because of Hermitian symmetry for ûi and b̂i, namely
û∗i (k) = ûi(−k) and b̂∗i (k) = b̂i(−k), this property is verified as well for the ±
components, u∗±(k) = u±(−k) and b∗±(k) = b±(−k). Using these decompositions, it
directly follows that

Ĥ
c
ij(k) = Hc(k)Pij(k)+ iεijnαnFEM(k)

+〈u∗+(k)b−(k)〉N∗i (k)N∗j (k)+ 〈u∗−(k)b+(k)〉Ni(k)Nj(k), (4.2)

where the time dependence has been omitted for clarity. The cross-helicity density Hc
is half the trace of the spectral cross-correlation

Hc(k, t)= 1
2 Ĥ

c
ii(k, t)= 〈u∗+b+〉 + 〈u∗−b−〉, (4.3)

is real, and verifies H∗c(k) = Hc(−k). The cross-helicity Kc is linked to the cross-
helical spectrum Hc through

Kc(t)= 1
2
〈u.b〉 =

∫ ∞
0

∫
Sk

Hc(k, t) d2k dk=
∫ ∞

0
Hc(k, t) dk. (4.4)

A non-zero cross-helicity breaks the mirror symmetry of the flow since b is a pseudo-
vector, consistently with the decomposition of Frisch et al. (1975). Nevertheless, it is
possible to consider cross-helicity without magnetic helicity and kinetic helicity.

The second right-hand side term of (4.2) can be non-zero in non-helical turbulence.
This term FEM is linked to the cross-correlation through

FEM(k, t)= 〈u∗+b+〉 − 〈u∗−b−〉 =− 1
2 iεijlαlĤ

c
ij(k, t). (4.5)

The quantity FEM verifies FEM *(k) = FEM(−k). It follows that FEM is linked to the
electromotive force through

〈u× b〉 = 2i
∫ ∞

0

∫
Sk

k
k

FEM(k, t) d2k dk=
∫ ∞

0

∫
Sk

εpqlαiαlĤ
c
pq(k, t) d2k dk. (4.6)

However, the electromotive force is not considered here in the framework of isotropic
MHD turbulence: indeed it would create a mean magnetic field, and thus break the
isotropy of the flow, according to

∂B0

∂t
=∇× 〈u× b〉 + η∇2B0. (4.7)

The two last right-hand side terms of (4.2) might be non-zero in complex flows
such as rotating or sheared MHD turbulence, and may be interpreted as a mixed
kinetic-magnetic polarization. But they always vanish in isotropic MHD turbulence
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with or without helicity, so that they are discarded from this point. Consequently, the
decomposition is similar to the one proposed in Frisch et al. (1975), and one has

Ĥ
c
ij(k)= Ĥ

c∗
ij (−k)=Hc(k)Pij(k)+ iεijnαnFEM(k). (4.8)

In what follows, the spherically averaged equation for the cross-helical spectrum is
derived, along with its corresponding spherically averaged nonlinear transfer, and
with the additional kinetic and magnetic transfer terms resulting from the presence of
Hc(k, t).

4.2. Equation for the cross-helical spectrum Hc(k, t)
In this part, we derive the evolution equation of the cross-helical spectrum Hc(k, t)
in a manner analogous to what was done in § 2 for EV(k, t) and EB(k, t). Starting
from (2.10), and using the modelling of the cross-correlation studied previously, which
amounts to Ĥ

c
ij =HcPij in IMHDT, yields(

∂

∂t
+ (ν + η)k2

)
Hc(k, t)= 1

2
T c

ii(k, t). (4.9)

Then, the EDQNM procedure is applied, and the quasi-normal expressions (2.22) and
(2.23) are used to compute explicitly T c

ii from (2.16). After classical algebra, this gives
the final equation for the cross-helical spectrum(

∂

∂t
+ (ν + η)k2

)
Hc(k, t)= Sc(k, t), (4.10)

with Sc the spherically averaged cross-helical nonlinear transfer

Sc(k, t) = 1
2

∫
Sk

T c
ii(k, t)d2k

= 8π2
∫
∆k

θkpqk2pq
[
2k(y2 − z2)H′′c (EV ′

0 + EB′
0 )+ p

(
(xy+ z3)(H′′cEB

0 −HcEV
0 )

+ (xy+ z)(H′′cEV
0 −HcEV ′′

0 )+ z(1− y2)(H′′cEB
0 −HcEB′′

0 )

+ z(1− x2)(H′′cEV
0 −HcEB′′

0 )
)]

dp dq, (4.11)

with Hc = Hc(k)/(4πk2), H′c = Hc(p)/(4πp2) and H′′c = Hc(q)/(4πq2). Since the
cross-helicity Kc(t) is an inviscid invariant of isotropic MHD turbulence, its nonlinear
transfer Sc is conservative, in agreement with the evolution equation

∂Kc

∂t
=−εc(t), εc(t)= 1

2
(ν + η)

〈
∂ui

∂xj

∂bi

∂xj

〉
, (4.12a,b)

where εc is the cross-helicity dissipation rate. Furthermore, according to the
quasi-normal expression (2.21), the cross-helical spectrum also impacts the magnetic
nonlinear transfers SV(mag) and SB(mag). Here are the additional contributions created by
a non-zero cross-helicity in the evolution equations of EV(k, t) and EB(k, t):

SV(cross)(k, t)= 16π2
∫
∆k

θkpqk2p2qH′′c
[
z(1− y2)Hc − (xy+ z3)H′c

]
dp dq, (4.13)

SB(cross)(k, t)= 16π2
∫
∆k

θkpqk3pq(1− y2 + z2 + xyz)H′′c (Hc −H′c) dp dq. (4.14)
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Both SV(cross) and SB(cross) are not conservative separately, but the sum has zero integral
over the whole wavenumber space. From now on, we write SB = SB(mag) + SB(cross)

and SV = SV(hyd) + SV(mag) + SV(cross). These explicit expressions for the three nonlinear
transfers involving the cross-helical spectrum are new. The different contributions of
the cross-helical, kinetic and magnetic spectra can be disentangled easily, and this does
not prevent us from analysing afterwards E+ and E−, linked to the Elsässer variables
z± = u± b. On the contrary, in Grappin et al. (1982, 1983), the cross-helical transfer
terms must be deduced from those associated with E+ and E−, with Hc= (E+−E−)/4.

At each time and each wavenumber k, the cross-helical spectrum must satisfy the
realizability condition given in Frisch et al. (1975), namely

Hc(k, t)6
√

EV(k, t)EB(k, t). (4.15)

For the numerical simulations of isotropic imbalanced MHD, we choose EV(k, t =
0) = EB(k, t = 0) given by (2.44), with an infrared slope σ = σB = σV which
is either σ = 2 or σ = 4. To ensure that (4.15) is always verified, we choose
Hc(k, t = 0) = √EV(k, t= 0)EB(k, t= 0)/ccond with ccond = 10: for smaller values of
ccond down to unity, the realizability condition can be violated at large scales after a
few turnover times.

It is worth noting that the complete spectral evolution equations of EV , EB and Hc
are entirely solved numerically unlike in Grappin et al. (1982). In the latter reference,
reduced equations are obtained with the assumption that equipartition between kinetic
and magnetic energy is reached, by imposing a strong mean magnetic field with
random orientation to remain statistically isotropic.

In what follows, four different features are addressed in imbalanced IMHDT: the
nonlinear transfers, the decay of cross-helicity, the spectral scaling of the main spectra
with notably the impact of moderate Reynolds numbers, and finally pressure spectra.

4.3. Spectral nonlinear transfers in imbalanced MHD
In this section, we investigate the nonlinear spectral transfers of kinetic energy,
magnetic energy and cross-helicity, and their associated fluxes. It is recalled that
both K = KV + KB and Kc are inviscid invariants of MHD turbulence. To visualize
the imbalance of MHD turbulence due to a non-zero cross-correlation 〈uibi〉, it is
convenient to work with the Elsässer spectra

E±(k, t)= EV(k, t)+ EB(k, t)± 2Hc(k, t), K± =
∫ ∞

0
E±(k, t) dk, (4.16a,b)

whose integrals over the whole wavenumber space, which we call the Elsässer energies
K±, are inviscid invariants of MHD turbulence as well (in the balanced case, one has
E+ = E− = E= EV + EB).

The different fluxes, normalized by the total dissipation rate ε, are first presented in
figure 5(a). The Elsässer, cross-helical and total fluxes Π+, Π−, Π c, and ΠV +ΠB,
linked to the inviscid invariants K+, K−, Kc and K, are consistently conservative. The +
Elsässer flux in slightly more intense than the − one. Moreover, the Elsässer and total
fluxes are much stronger than the cross-helical one, which was multiplied by 10 for
readability reasons. One can remark that around the integral wavenumber kL, the cross-
helical flux is negative, meaning that part of the cross-helicity is transferred towards
large scales. This is not a transient effect, and remains rather subdominant since the
main part of the cross-helical flux is positive and constant in the inertial range. This
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(a) (b)

(c)

FIGURE 5. Nonlinear transfers and fluxes, normalized by ε, at Reλ(t = 30τ0) = 4 × 104

for σ = 2, along with the integral and dissipative wavenumbers kL and kMHD
η . For better

readability, the cross-helical transfer and flux were multiplied by 10. (a) Cross-helical
flux Π c, Elsässer fluxes Π+ and Π− and total energy flux ΠV +ΠB. (b) Kinetic energy
transfers (black): SV(hyd), SV(mag) and SV(cross); Magnetic energy transfers (grey): SB(mag), and
SB(cross). (c) Total transfer SV + SB (black) and cross-helical transfer Sc (grey); arrows
indicate the direction of the transfers.

could also be a signature of inviscid invariants not positive–definite: indeed, a similar
feature was observed for kinetic helicity in HIT (Briard & Gomez 2017).

This is better illustrated in figure 5(b), where the five kinetic and magnetic nonlinear
spherically averaged transfers are displayed, namely SV(hyd), SV(mag), SV(cross), SB(mag) and
SB(cross). These transfer terms can be decomposed into two groups: the ones already
present in balanced MHD, SV(hyd), SV(mag) and SB(mag), which are direct transfers from
large to small scales. Whereas the terms arising from the presence of cross-helicity,
SV(cross) and SB(cross), are inverse transfers stronger at large scales, and as intense as the
others.

Furthermore, in figure 5(c), the total and cross-helical nonlinear transfers SV + SB

and Sc are presented. The transfer of total energy is much more intense than the one of
cross-helicity: total energy is taken from a large range of scales and brought to smaller
scales close to kMHD

η . Whereas Sc is much less intense and transfers cross-helicity
in a more complex way: indeed, most of the cross-helicity is taken from a narrow
band of large scales to a wide range of smaller scales. But in addition, large scales
cross-helicity is also brought at scales bigger than k−1

L , illustrating some strong inverse
transfer mechanisms. Moreover, one can observe that around kMHD

η , cross-helicity is
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also slightly transferred to larger scales. These different directions of transfers are
sketched with arrows in figure 5(c).

4.4. Decay of cross-helicity
The impact of a non-zero initial cross-helicity on the decay is illustrated in figure 6(a):
it is shown that with a sufficient initial velocity–magnetic correlation, here for
Hc(k, t= 0)= 0.5

√
EV(k, t= 0)EB(k, t= 0), the decay of the total energy K is slightly

delayed. If the amount of initial cross-helicity is too weak, there is no visible effect
on K. Note that this kind of initial delay is analogous to what was observed in HIT
with kinetic helicity (André & Lesieur 1977; Briard & Gomez 2017). Furthermore,
during the decay of KV , KB and Kc, the normalized correlation ρc = Kc/

√
KVKB,

linked to the averaged cosine of the angle between u and b, increases linearly time,
from the initial value to unity, meaning toward alignment in the same direction of
the velocity and magnetic fields.

The asymptotic decay of cross-helicity is finally briefly discussed. As mentioned
above, because of the slow increase of the normalized correlation ρc, the realizability
condition (4.15) is eventually broken for large times. In other words, this means
that long-time decay with several hundreds of turnover times, as in figure 4,
cannot be easily performed. Note that this is not a limitation for DNS because
in practice only a few turnover times are computed. We nevertheless propose some
quantitative information about the decay exponent αc of cross-helicity, by choosing
Kc(t = 0) = 10−2, so that a few hundred turnover times occur with the realizability
condition satisfied.

Three conclusions can be drawn from figure 6(b): (i) the decay of cross-helicity is
very slow compared to the decay of total energy; (ii) the decay exponent αc of Kc
seems to be independent of σ , since one has αc ' −0.2 for both σ = 2 and σ = 4;
and (iii) the presence of cross-helicity does not modify the decay exponent of the
total energy, since the previous theoretical predictions (3.6) are recovered: see inset of
figure 6(b) where α=−1.2 for σ = 2 and α=−1.4 for σ = 4. It follows from these
three features that the decay of cross-helicity in isotropic MHD is quite different from
the decay of kinetic helicity in isotropic hydrodynamic turbulence (Briard & Gomez
2017).

4.5. The inertial scaling of the cross-helical spectrum Hc(k, t)
In this part, the emphasis is put on the inertial scaling of the cross-helical spectrum
Hc(k, t). First, the total energy and cross-helical spectra E(k, t) and Hc(k, t) are
presented in figure 7(a) for σ = 2. The inertial scaling of E remains k−3/2, similarly
to the balanced case: even though not presented, EV and EB still scale in k−3/2 despite
the presence of cross-helicity. The effects of the cross-helicity are more visible on
the Elsässer spectra which are discussed in the next section.

The cross-helical spectrum itself scales with a slope close to k−5/3, and is negative at
small scales, similarly to what was obtained for the kinetic helicity in skew–isotropic
turbulence (Briard & Gomez 2017). One could conclude from these observations, at
least within the EDQNM framework, that spectra of quantities not positive–definite,
such as 〈u · ω〉 and 〈u · b〉, exhibit negative values at small scales, if 〈u · ω〉 and
〈u · b〉 are positive initially.

The present k−5/3 scaling is different from the k−2 one of Grappin et al. (1982):
there are at least two arguments to explain the difference, in favour of the present
k−5/3 inertial range. Firstly, in Grappin et al. (1982), as already explained, simplified
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(a) (b)

FIGURE 6. Decay of total energy and cross-helicity. (a) Impact of initial cross-helicity
Kc(t = 0) on the early decay of the total energy K compared to the balanced case (in
grey) for σ = 2. (b) Long-time decay of cross-helicity with Kc(t = 0) = 10−2, for σ = 2
(black) and σ = 4 (grey); the inset represents the decay of total energy during the same
simulation.

(a) (b)

FIGURE 7. Cross-helical spectra for imbalanced MHD for σ = 2. (a) Total energy and
cross-helical spectra E(k, t) and Hc(k, t) at Reλ(t= 30τ0)= 4× 104 along with the integral
and dissipative wavenumbers kL and kMHD

η . (b) Spectral slope of Hc, given by log Hc/ log k
for different Reλ: the −5/3 and −2 slopes are indicated in grey; Inset: focus on the inertial
range.

EDQNM equations are solved numerically, with the assumption that there is a strong
uniform magnetic field of random orientation that causes equipartition of kinetic and
magnetic energies, i.e. EV =EB at all scales. The difference between the present k−5/3

and k−2 scalings could thus result from this assumption, but this is rather difficult
to quantify. The second argument is a strong Reynolds number effect. In Grappin
et al. (1982), the Reynolds number is lower than in our case, where Reλ = 4 × 104,
corresponding to almost two additional decades in wavenumber space. To better
illustrate this feature, the slope of Hc for different Reλ is presented in figure 7(b):
there is a clear influence of the Reynolds number on the spectral slope of the
cross-helical spectrum. Indeed, for moderate Reλ ∼ 250, the slope of Hc is close to
k−2, whereas very large Reynolds numbers are needed to obtain a steady result, close
to k−5/3 here. Nevertheless, the tendency of our results is in agreement with Grappin
et al. (1982) regarding the spectral slope of Hc, in a sense that it is steeper than the
one of E.
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Finally, one can remark that the −5/3 slope of the cross-helical spectrum is similar
to the one of the kinetic helicity spectrum in HIT, framework in which kinetic
helicity is an inviscid invariant, unlike in MHD. If we go further assuming the k−5/3

dependence, dimensional analysis provides (i) Hc(k) ∼ εa
c ε

bk−5/3 with a + b = 2/3,
and a 6= 0 since spectra of inviscid invariants are expressed in general as function of
their dissipation rate, and (ii) no dependence on b0. The latter somehow means that
the dynamics of Hc becomes much less dependent on the Alfvèn time τA = (kb0)

−1,
which is consistent with the cross-helicity reducing initially the nonlinear transfers,
as shown in figure 6(a). Compensating Hc with the different possibilities for a and b
indicates that a relevant scaling could be

Hc(k, t)=Cc (εεc)
1/3 k−5/3, (4.17)

which gives Cc' 3, similar to the value of CIK for E. Choosing a ‘linear’ dependency
on εc (a= 1 and b=−1/3) yields a way too large constant compared to other usual
constants (Cc > 30): the fact that Hc should not depend linearly on εc is consistent
with some arguments proposed by Grappin et al. (1982).

Now that the inertial scaling of Hc has been addressed and the impact of moderate
Reynolds numbers highlighted, the effects of cross-helicity on the Elsässer spectra and
on the short-time dynamics are analysed.

4.6. E+, E− and the short-time dynamics
It has been shown in figure 6(a) that a sufficient amount of initial cross-helicity
Kc(t = 0) could slightly delay the initial decay of total energy K, a feature similar
to what is obtained in HIT with initial kinetic helicity (André & Lesieur 1977).
Furthermore, it was revealed in the previous section that the presence of cross-helicity
was not changing the inertial scaling of the kinetic, magnetic and total spectra EV , EB

and E= EV + EB. Therefore, it is proposed in this part to briefly illustrate the impact
of cross-helicity on the inertial scalings of the Elsässer spectra E+ and E− defined in
(4.16), and on the short-time dynamics as well.

One can observe in figure 8(a) that adding a greater amount of initial cross-helicity
tends to increase the kinetic to magnetic energy ratio KV/KB, along with the positive
Elsässer energy K+, the latter being expected from the definition (4.16). Some
justification are proposed hereafter to justify the increase of kinetic energy by adding
cross-helicity in the flow. Regarding the asymptotic value of KV/KB for the balanced
case, it is worth noting that it is rather independent of the Reynolds number and only
slightly depends on the initial conditions (see figure 11(d) in appendix A.2 for more
details).

The Elsässer spectra E+ and E− are presented in figure 8(b). Unlike for EV , EB

and E, a slight departure is observed for their inertial scaling with respect to the
IK prediction in k−3/2: the spectral slope of E+ is steeper, between k−1.55 and k−5/3,
whereas the opposite happens for E−, where the slope is approximately between
k−1.2 and k−4/3. It is rather difficult to determine the exact scalings of E+ and E−
since the inertial slopes slightly vary with both Kc(t = 0) and the Reynolds number.
Nevertheless, the finding that the slope of E+ becomes steeper than −3/2 and the
one of E− less steep is a robust feature, already obtained in Grappin et al. (1982).
In fact, even though equipartition is not assumed here unlike the latter reference, the
inertial spectral slopes obtained for E+ ∼ k−m+ and E− ∼ k−m− are in agreement with
the prediction of Grappin and coworkers, namely m+ +m− ' 3.
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(a) (b)

FIGURE 8. (a) Impact of the initial cross-helicity Kc(t=0) on the short-time dynamics, for
σ = 2 and EV(k, t= 0)= EB(k, t= 0), on the ratios KV/KB (black) and K−/K+ (grey). (b)
Elsässer spectra E+ and E−, for σ = 2 and Reλ(t= 30τ0)= 2× 103, with initial condition
Hc(k, t= 0)= 0.1

√
EV(k, t= 0)EB(k, t= 0); The inset gives the slope log E±/ log k in the

inertial range.

Now, we wish to interpret physically the meaning of the departure of E+ and E−
from the IK k−3/2 scaling. It is clear from figure 8(b) that the Elsässer spectrum E+ is
the most intense, consistently with the fluxes displayed earlier in figure 5(a). In terms
of the Elsässer variables z±= u± b, it means that adding some positive 〈u · b〉 in the
flow enhances the dynamics of z+, thus making E− less intense than E+. Therefore,
z+ is transported by a subdominant field at large scales, leading to a Kolmogorov-like
local transfer mechanism for E+, with the characteristic time τV = (εk2)−1/3 like in
HIT. This further justifies that the scaling of E+ tends to k−5/3. On the contrary, since
the transport of z− is amplified, the ‘Alfvénization’ phenomenon is increased for E−
and the nonlinear transfers are slowed down, thus explaining the slope less steep than
−3/2, close to E−∼ k−4/3. Incidentally, the fact that the Kolmogorov-type dynamics is
dominant (because E+>E− at the most energetic scales) is consistent with the growth
of the kinetic to magnetic energy ratio in figure 8(a), and with the phenomenology of
Dobrowolny, Mangeney & Veltri (1980) as well, where E+ should prevail if positive
cross-correlation is initially dominant.

Based on these observations, one could propose theoretical scalings for the
Elsässer spectra in imbalanced IMHDT. Proceeding as in § 3.1, one would have
ε+ = kE+(k)/τV(k) so that E+ ∼ ε+ε−1/3k−5/3 and ε− = kE−/τtr(k) with τtr(k) =
(k2ε)−2/3/(kb0)

−1 so that E− ∼ ε−b0ε
−2/3k−4/3.

The conclusion is that cross-helicity affects both the early dynamics of the decaying
turbulent flow, and the inertial scalings of the Elsässer spectra as well, with different
mechanisms at stake for E+ and E−. If one injects instead negative correlation 〈u · b〉,
the previous findings are still verified by changing the ()+ and ()− quantities. The
k−5/3 and k−4/3 scalings for E+ and E− respectively deserve more investigation, since
two different effects are in competition: a larger Reynolds number which brings the
slopes closer to k−3/2, and a greater normalized cross-helicity ρc which on the contrary
makes the slopes depart from k−3/2.

4.7. Pressure spectrum EP(k, t)
Now that the impact of cross-helicity on the kinetic energy, magnetic energy, and
Elsässer spectra has been discussed, the emphasis is put here on pressure spectra.
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The evolution equation of the pressure fluctuations, the so-called Poisson equation, is
obtained by taking the divergence of the velocity fluctuations equation (2.1)

− ∂2p∗

∂xj∂xj
= ∂uj

∂xi

∂ui

∂xj
− ∂bj

∂xi

∂bi

∂xj
. (4.18)

The spectral two-point second-order pressure correlation is then defined as

EP(k, t)δ(k− p)= 〈p̂(k, t)p̂∗(p, t)〉, (4.19)

where the spectral fluctuating pressure is given by

p̂(k, t)= αiαj

(
b̂ibj(k, t)− ûiuj(k, t)

)
. (4.20)

The spectral second-order pressure correlation reads, after some algebra,

EP(k)= 2αiαjαpαq

∫
k=p+q

[
R̂ip(p)R̂jq(q)+ B̂ip(p)B̂jq(q)− 2<

(
Ĥ

c
ip(p)Ĥ

c
jq(q)

)]
d3p.

(4.21)

The pressure spectrum, obtained by spherically averaging EP, is then

EP(k, t) =
∫

Sk

EP(k, t) d2k= E(hyd)
P (k, t)+ E(mag)

P (k, t)+ E(cross)
P (k, t)

= 16π2
∫
∆k

kpq(1− y2)(1− z2)(EV ′
0 EV ′′

0 + EB′
0 EB′′

0 ) dp dq

− 32π2
∫
∆k

kpq(1− y2 − z2 + y2z2)H′cH′′c dp dq, (4.22)

where E(hyd)
P is the classical pressure spectrum of HIT (Meldi & Sagaut 2013b; Briard,

Iyer & Gomez 2017), E(mag)
P is the additional contribution in MHD resulting from the

Laplace force and E(cross)
P corresponds to the impact of cross-helicity. In the following

simulations, the pressure spectrum is set to zero initially: it is always found that the
infrared scaling is k2, as in HIT (Lesieur et al. 1999).

In balanced MHD (with E(cross)
P = 0), it follows that the scaling of the pressure

spectrum is different from its k−7/3 inertial scaling in HIT: indeed, by dimensional
analysis, one obtains EP ∼ kEB(k)2 ∼ kEV(k)2, so that

EP(k, t)∼ b0 ε k−2. (4.23)

This k−2 inertial scaling is assessed in figure 9(a) for E(mag)
P and E(iso)

P , and thus for EP

as well. One can remark that at large scales, E(mag)
P is more intense than E(hyd)

P : this
is because of the initial conditions (2.44), where EB ∼ k2 and EV ∼ k4 at large scales.
Note that the pressure variance, defined as KP =

∫∞
0 EP(k) dk, decays at a rate 2α,

with K∼ tα, for dimensional reasons since p2∼ u4, similarly to HIT (Meldi & Sagaut
2013b).

For imbalanced MHD, if an inertial k−5/3 scaling is assumed for the cross-helical
spectrum, as shown previously in figure 7(a), it follows that E(cross)

P ∼ kHc(k)2 ∼ k−7/3:
this scaling is recovered here in figure 9(b), and one can observe that E(cross)

P is mainly
negative, which is expected given its expression (4.22). Other possible effects of cross-
helicity on the hydrodynamic and MHD parts are rather difficult to quantify, since the
scaling of E(mag)

P and E(iso)
P remains like k−2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000120
https://www.cambridge.org/core


The decay of isotropic MHD turbulence 25

(a) (b)

FIGURE 9. Pressure spectra for balanced and imbalanced isotropic MHD, for σ = 2 at
Reλ = 3 × 103, along with the integral and dissipative wavenumbers kL and kMHD

η , with
initial condition EB(k, t = 0)= EV(k, t = 0). (a) Balanced case: EP(k, t) with its isotropic
and magnetic parts E(hyd)

P (k, t) and E(mag)
P (k, t). (b) Imbalanced case: E(hyd)

P (k, t), E(mag)
P (k, t)

and E(cross)
P (k, t).

5. Assessment of the 4/3rd laws for isotropic MHD
In this part, we focus on statistics of homogeneous isotropic balanced and

imbalanced MHD turbulence. The objective is to assess the two 4/3rd laws for
the total energy and cross-helicity. Note that some calculations and simplifications
are proposed in appendices B.1 and B.2 regarding the evolution equation of the total
dissipation rate ε.

We aim at assessing at large Reynolds numbers in both decaying balanced and
imbalanced IMHDT the asymptotic 4/3rd laws for structure functions, derived in
Politano & Pouquet (1998a), namely

D(MHD) = 〈δuL(δuiδui + δbiδbi)− 2δbLδuiδbi〉 =− 4
3 rε, (5.1)

D(MHD)
c = 〈δuLδuiδbi〉 − 1

2 〈δbL(δbiδbi + δuiδui)〉 =− 4
3 rεc, (5.2)

where r is the distance between two points located in x and x′ = x+ r, the subscript
()L refers to the component along r, the prime ′ to quantities expressed in x′ and the
increment is defined as δui=u′i−ui. The second scaling (5.2) is specific to imbalanced
MHD, whereas the first one (5.1) is supposed to be verified in both imbalanced and
balanced MHD. One can remark that the definition of D(MHD)

c differs from Politano &
Pouquet (1998a): indeed, here cross-helicity is defined as 〈uibi〉/2 and not 〈uibi〉. The
term 〈δbLδuiδbi〉 is linked to the coupling between the equations for the velocity and
magnetic fields, and is non-zero even without cross-helicity.

In order to assess at large Reynolds numbers these two expressions, we need to
derive formulae which allow us to compute D(MHD) and D(MHD)

c from the spectral
nonlinear transfers. The evolution equations of the kinetic, magnetic and cross-helical
structure functions 〈δuiδui〉, 〈δbiδbi〉 and 〈δuiδbi〉 read

∂〈δuiδui〉
∂t

+ ∂〈δujδuiδui〉
∂rj

= 2ν
∂2〈δuiδui〉
∂rj∂rj

− 4εV + 2
〈
δuiδbj

∂δbi

∂rj

〉
, (5.3)

∂〈δbiδbi〉
∂t

+ ∂〈δujδbiδbi〉
∂rj

= 2η
∂2〈δbiδbi〉
∂rj∂rj

− 4εB + 2
〈
δbiδbj

∂δui

∂rj

〉
, (5.4)
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∂〈δuiδbi〉
∂t

+ ∂〈δujδbiδui〉
∂rj

= 2ν
∂2〈δuiδbi〉
∂rj∂rj

− 4εc + 1
2
∂

∂rj
〈δbj(δbiδbi + δuiδui)〉. (5.5)

For the latter equation (5.5), a unit magnetic Prandtl number (ν= η) was assumed for
simplicity. Summing (5.3) and (5.4), and further neglecting the time derivative along
with the viscous terms, negligible in the inertial range at large Reynolds numbers, one
gets

∂

∂rj

(〈δuj(δuiδui + δbiδbi)− 2δbjδuiδbi〉
)=−4ε. (5.6)

The final step consists into writing δuj = rjδuL/r, and using ∂rj(rjD(MHD)/r) =
∂r(r2D(MHD))/r2, so that integration yields (5.1). Proceeding similarly with (5.5)
allows us to recover (5.2).

To obtain a relation between spectral and physical quantities, additional equations
are needed. We define the two-point kinetic, magnetic and cross-helical correlations
in physical space

Rij(r, t)= 〈uiu′j〉, Bij(r, t)= 〈bib′j〉, Hij(r, t)= 〈uib′j〉, (5.7a−c)

along with the scalar quantities 2R(r) = 〈uiu′i〉, 2B(r) = 〈bib′i〉 and 2H(r) = 〈uib′i〉,
which are linked to the previous structure functions through 〈δuiδui〉 = 4KV − 4R, and
similarly for the magnetic field and the cross-helicity. The evolution equations of R,
B and H thus read

∂R
∂t
= 2ν

r2

∂

∂r

(
r2 ∂R
∂r

)
+ ∂

∂rl
〈uiulu′i − biblu′i〉, (5.8)

∂B
∂t
= 2η

r2

∂

∂r

(
r2 ∂B
∂r

)
+ ∂

∂rl
〈ulbib′i − uiblb′i〉, (5.9)

∂H
∂t
= (ν + η)

r2

∂

∂r

(
r2 ∂H
∂r

)
+ 1

2
∂

∂rl
〈uiulb′i − biblb′i + ulbiu′i − bluiu′i〉, (5.10)

which were notably obtained in Chandrasekhar (1951). Summing the two first
equations, and using the previous relations yields

−4ε − ∂

∂t
〈δuiδui + δbiδbi〉 = 8

r2

∂

∂r

(
r2 ∂

∂r
(νR+ ηB)

)
+ 4

∂

∂rl
〈uiulu′i − biblu′i︸ ︷︷ ︸

(i)

+ ulbib′i − uiblb′i︸ ︷︷ ︸
(ii)

〉. (5.11)

Dropping the time derivative and viscous terms, and further identifying with (5.6)
gives that ∂r(r2D(MHD)) = 4r2∂rl〈(i) + (ii)〉. Proceeding similarly with the equation of
H, and identifying with the equations of EV + EB and Hc, finally yields

D(MHD)(r, t)=
∫ ∞

0

4
k

(
SV(k, t)+ SB(k, t)

) [sin(kr)
(kr)2

− cos(kr)
kr

]
dk, (5.12)

D(MHD)
c (r, t)=

∫ ∞
0

4
k

Sc(k, t)
[

sin(kr)
(kr)2

− cos(kr)
kr

]
dk, (5.13)
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(a) (b)

FIGURE 10. Compensated structure functions for balanced and imbalanced MHD
turbulence for σ = 2, along with the integral and dissipative scales L and ηMHD.
(a) −DMHD/(εr) at Reλ = 2× 104. (b) −DMHD/(εr) and −DMHD

c /(εcr) at Reλ = 4× 104.

and these formulae are completely analogous to the ones used for kinetic and helical
structure functions in isotropic turbulence (Briard & Gomez 2017). Some details about
the (i) and (ii) terms are given in appendix B.3, along with their link to the 4/5th
law for balanced isotropic MHD turbulence.

The spectral-to-physical space formulae (5.12) and (5.13) are used to assess the
4/3rd laws of balanced and imbalanced MHD turbulence in figure 10(a,b). First,
for the fully isotropic case in figure 10(a) at Reλ = 2 × 104, there is a satisfactory
agreement for the compensated structure function with the expected value 4/3,
comparable to recent results in HIT (Briard & Gomez 2017). The difference is
attributed to the non-stationarity since the turbulence is not forced in the present
simulations. Secondly, for the case with cross-helicity in figure 10(b) at Reλ= 4× 104,
the agreement with the expected 4/3 is satisfactory as well. A noteworthy feature is
that −D(MHD)

c /rεc tends to 4/3 at inertial scales slightly larger than the ones for which
−D(MHD)/rε tends to 4/3. In addition, unlike the structure function of total energy,
the cross-helical structure functions is negative at scales larger than the integral one
L. For both the balanced and imbalanced cases, there is less than 3 % departure from
the theoretical prediction 4/3, derived for infinite Reynolds numbers and stationary
turbulence.

The 4/3rd laws for total energy and cross-helicity were assessed numerically here
in decaying isotropic MHD turbulence within 3 %. This slight departure from the
expected 4/3 is due to the non-stationarity, and not to the inertial scalings of the
spectra. Indeed, both the IK k−3/2 inertial scaling of the total energy spectrum and the
Kolmogorov k−5/3 inertial scaling of the cross-helical spectrum are compatible with the
4/3rd scaling of the third-order structure functions.

6. Conclusion and perspectives
In this work, decaying isotropic MHD turbulence (IMHDT) was investigated

numerically at large Reynolds numbers using EDQNM, without any background mean
magnetic field, as done in the pioneering study of Pouquet et al. (1976). Within the
EDQNM modelling, an eddy-damping term µA is added to take into account the
interactions of Alfvén waves packets and ensure realizability. Consequently, since
µA
−1 becomes the characteristic time of the inertial range, the total energy spectrum

E(k, t) follows the k−3/2 Iroshnikov–Kraichnan (IK) scaling. Therefore, the objective
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of this work is not to analyse if the inertial scaling is k−3/2 or k−5/3 since it is
prescribed by the modelling, but rather to analyse the decay of total energy, and the
impact of cross-helicity on the global dynamics. The overall purpose of this work
was also to propose a solid basis for future works in anisotropic MHD turbulence,
in order to further disentangle the complex interactions between the different fields
at stake. The first part dealt with balanced MHD, in which cross-helicity is zero; in
the second part, cross-helicity was initially injected in the flow at large scales; and
in the last part, statistics were addressed in physical space.

For balanced IMHDT, the total, kinetic and magnetic energy spectra verify the IK
scaling, namely E ∼ EV ∼ EB ∼ k−3/2: the different kinetic and magnetic nonlinear
transfers exchange energy from large to small scales, and no significant inverse
cascades mechanisms were found. The residual energy spectrum ER was investigated
in appendix A as well for various initial conditions. The main original contribution is
the prediction of the long-time decay of the total energy K at large Reynolds numbers
as a function of the large scale infrared slope σ . A new theoretical time exponent
α is derived, with K ∼ tα, which is interestingly the same as the one of kinetic
energy in HIT (Lesieur 2008; Meldi & Sagaut 2013a), and assessed numerically. It
is worth noting that an inertial scaling in k−3/2 is compatible with a decay rate of
the total energy similar to the decay rate of kinetic energy in isotropic hydrodynamic
turbulence, the framework in which the kinetic energy spectrum scales as k−5/3. Our
prediction is at variance with Galtier et al. (1999), where the root mean square of the
magnetic energy b0 is assumed to be constant. Hence, we believe that the prediction
of the latter reference should be more adapted to strong MHD with a mean magnetic
field, when the turbulent transfers occur mainly in the plane perpendicular to B0. This
needs to be verified by three-dimensional DNS, a rather complex task since a great
number of turnover times is required.

In a second part, an initial non-zero cross-helicity 〈u · b〉 was injected at large
scales to better understand what are the effects of the velocity–magnetic correlation
on the spectral scalings and dynamics, still without a mean magnetic field to discard
considerations about the anisotropy of the flow. We derived a complete spectral
modelling for the cross-helicity, which reduces to the expression of Frisch et al.
(1975) for IMHDT. In particular, the velocity–magnetic correlation can contain effects
from the electromotive force, and more subtle anisotropic features possibly present
in rotating or shear MHD turbulence. Beyond these theoretical considerations, three
effects of cross-helicity can be highlighted: (i) the initial reduction of nonlinear
transfers, similarly to the effect of kinetic helicity in HIT (Briard & Gomez 2017);
(ii) the increase of the kinetic to magnetic energy ratio with larger amount of positive
initial 〈u · b〉; and (iii) the fact that Kc decays much slowly than K, with a decay
exponent close to −0.2 very likely independent of the large scale infrared slope σ .

The important and original result of this section is that the cross-helical spectrum
Hc experiences a significant effect from moderate Reynolds numbers in the inertial
range. Indeed, it scales as Hc ∼ k−5/3 for large Reλ only, whereas for lower Reλ, a
transient scaling close to k−2 is found. Consequently, moderate Reynolds numbers
effects explain the difference between the present Hc∼ k−5/3 scaling and the Hc∼ k−2

proposed by Grappin et al. (1982). Moreover, it was shown numerically that despite
the presence of cross-helicity, the spectra E, EV and EB still scale in k−3/2 in the
present work. The net effect of the velocity–magnetic correlation can be observed
through the Elsässer spectra E+ and E−, which both depart from the k−3/2 IK
scaling. More precisely, it seems that with enough cross-helicity, the Elsässer spectra
slowly approach E+ ∼ k−5/3 and E− ∼ k−4/3, because the dynamics of E+ becomes
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Kolmogorov-like, with a characteristic time (k2ε)−1/3, whereas the ‘Alfvénization’
is enhanced for E−, thus slowing down even more the transfers. Some work still
needs to be done to determine what should be the final scalings of the E± spectra,
since they depend on both the relative level of cross-helicity, which increases with
time, and the Reynolds number. The important conclusion nevertheless remains that
cross-helicity does not make the total, kinetic and magnetic energy spectra deviate
from the k−3/2 scaling in the isotropic framework, only the Elsässer spectra.

A subsequent theoretical analysis, made rather simple thanks to EDQNM, is to
address pressure fluctuations due to the magnetic field in the Poisson equation. It is
found that for the total pressure spectrum, the usual hydrodynamic part depending on
EV and the magnetic part depending on EB both scale in k−2 in the inertial range,
whereas the subdominant cross-helical part behaves like k−7/3 for the imbalanced case.

Finally, in physical space, the two 4/3rd laws for the total energy and the
cross-helicity were assessed numerically with good agreement, at large Reynolds
numbers, in decaying MHD turbulence. A noteworthy feature to underline is that
both the total energy and the cross-helicity are equally close to the 4/3rd prediction,
whereas E(k, t) and Hc(k, t) scale respectively in the inertial range as k−3/2 and k−5/3.
Some developments were proposed in appendix to simplify the evolution equation of
the total dissipation rate.

The most important and relevant perspective of this work would be to derive a three-
dimensional anisotropic EDQNM model, with k-dependence, to analyse the anisotropy
created by a mean magnetic field at large Reynolds number and possibly to shed some
light on the k−3/2

⊥ versus k−5/3
⊥ controversial topic. All the ingredients are available:

the theoretical features for a k-dependent anisotropic EDQNM model (Cambon et al.
1997), and the anisotropic modelling of homogeneous and solenoidal tensors (Briard,
Gomez & Cambon 2016), to be extended to the magnetic field.

Appendix A. Additional results in spectral space
In this section, some complementary results are gathered: first, some considerations

about the modelling of the magnetic potential spectrum are proposed. Then, numerical
results about the residual spectrum ER are presented.

A.1. Magnetic potential spectrum A(k, t)
In this part, it is proposed to briefly analyse the modelling of the magnetic potential
spectrum A(k, t). This is of theoretical interest since its nonlinear spectral transfer is
linked to the third-order correlation 〈aub〉: this correlation, written symbolically, was
examined in Politano, Gomez & Pouquet (2003), and it was notably shown that in the
inviscid case, it is exactly related to the dissipation rate of the magnetic helicity.

The evolution equation of the magnetic potential a, defined as b=∇× a, with the
Coulomb Gauge ∇ · a= 0 to make it divergence free, reads

∂a
∂t
= u× b+ η∇2a. (A 1)

One can define a two-point second-order spectral tensor for the magnetic potential as

Âij(k, t)δ(k− p)= 〈â∗i (p, t)âj(k, t)〉, (A 2)

whose evolution equation is(
∂

∂t
+ 2ηk2

)
Âij(k, t)= T A

ij (k, t). (A 3)
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The associated nonlinear transfer reads

T A
ij (k, t)= εimn

∫
Saub

njm(k, p, t) d3p+ εjmn

∫
Saub∗

nim (k, p, t) d3p, (A 4)

where Saub
ijl is the following three-point third-order spectral correlation

Saub
ijl (k, p, t)δ(k+ p+ q)= 〈b̂i(q, t)âj(k, t)ûl(p, t)〉. (A 5)

Since Âij is a solenoidal tensor, it can be decomposed in isotropic MHD as

Âij(k, t)= Pij(k)
A(k, t)
4πk2

+ iεijnαn
HM(k, t)

k
, (A 6)

where HM is the true magnetic helicity density, with k2HM =HB, and A(k, t) is the
magnetic potential spectrum, linked to the magnetic energy spectrum EB(k, t) through

A(k, t)= 1
2

∫
Sk

Âii(k, t) d2k= k−2EB(k, t). (A 7)

It follows that in the inertial range, the magnetic potential spectrum scales in A ∼
k−7/2, as obtained in Galtier et al. (1999). An evolution equation for A(k, t) could be
obtained by spherically averaging the equation of Âii/2.

A.2. Residual energy spectrum ER(k, t)
The emphasis is put here on the residual energy spectrum ER = EV − EB. The
residual energy spectrum is displayed in figure 11 along with EV(k, t) and EB(k, t)
for three different initial conditions: in each case EB(k, t = 0) is given by (2.44),
and (a) EV(k, t = 0) = 0 with σB = 2, (b) EV(k, t = 0) = 0 with σB = 4 and (c)
EV(k, t = 0) = EB(k, t = 0) with σV = σB = 2. It is revealed that for all three cases,
ER(k, t) is negative, which means that there is an excess of magnetic energy at all
scales, and scales in k−2 in the inertial range.

Moreover, regarding large scales, one can remark in figure 11 that the infrared
scaling of ER, for wavenumbers smaller than kL, is either ER ∼ k4, when initially
σV = σB (simulations not presented here with σV = σB = 1 and σV = σB = 3 confirm
this observation), or ER∼ kσB when EV(k, t= 0)= 0, which is the novelty of this short
section.

The k−2 inertial scaling of ER is in agreement with Grappin et al. (1983) for
imbalanced isotropic MHD, and consistent with Müller & Grappin (2005) for strong
MHD with ER(k⊥)∼ k−2

⊥ . In Müller & Grappin (2004), it is argued that the prediction
ER ∼ k−2 of Grappin et al. (1983) stems from non-local considerations, which gives
in particular k3E2

V ∼ k3EBER⇒ k3E2
V ∼ k2b2

0ER, where dimensional analysis kEB(k)∼ b2
0

has been used. Further using the IK scaling (3.2) in the previous equation yields

ER(k, t)∼ ε

b0
k−2. (A 8)

This scaling can also be recovered using a method similar to the one of the IK
phenomenology. In (3.1), the dissipation rate ε can be defined with u2 ∼ b2

0 instead
of u2 ∼ kE, and τR = (k3ER)

−1/2 instead of τV , so that ε ∼ b2
0τA/τ

2
R ∼ b0k2ER, which
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(a) (b)

(c) (d )

FIGURE 11. Residual energy, kinetic energy and magnetic energy spectra ER(k, t), EV(k, t)
and EB(k, t) for various initial conditions, at Reλ' 2× 103, along with the integral, MHD
dissipative and Kolmogorov wavenumbers kL, kMHD

η and kη. (a) Initial condition (2.44) with
σB= 2 and EV(k, t= 0)= 0. (b) Initial condition (2.44) with σB= 4 and EV(k, t= 0)= 0. (c)
Initial condition (2.44) with EV(k, t= 0)=EB(k, t= 0) and σV = σB= 2. (d) Time evolution
of the kinetic to magnetic energy ratio KV/KB for the three previous initial conditions;
inset is the spectral ratio EV/EB for EV(k, t= 0)= EB(k, t= 0) and σV = σB = 2.

eventually recovers (A 8). The assumption u2 ∼ kE→ b2
0 appears to be appropriate

since the difference between the kinetic and magnetic spectra essentially lies at large
scales where EB is stronger than EV , for various initial conditions, as shown in
figure 11. Nevertheless, the k−2 inertial scaling for the residual energy spectrum is at
odds with the isotropic MHD turbulence results of Müller & Grappin (2004, 2005)
where ER∼ k−7/3 is found. This is because in the latter references, the kinetic energy
and magnetic energy spectra scale in EV ∼ EB ∼ k−5/3, unlike the present simulations
where EV ∼EB∼ k−3/2: using EV ∼ k−5/3 in the previous arguments would consistently
yield ER ∼ k−7/3. Note that the exponents of E−mR

R and E−mtot verify the relation
mR = 2mtot − 1 which was recently improved to match solar wind data (Grappin,
Müller & Verdini 2016).

In figure 11(d), the kinetic to magnetic energy ratio KV/KB is presented for the three
previous initial conditions: the asymptotic value of KV/KB only slightly depends on
initial conditions after a few turnover times τ0, and in all cases, there is an excess of
magnetic energy. In the inset of figure 11(d), the spectral ratio EV/EB is presented for
the third initial condition, which clearly illustrates that the excess of magnetic energy
is mainly localized at large scales.

Finally, the last point to address is the decay of the residual energy KR =KV −KB.
In figure 4, it is revealed that its decay exponent αR follows as well the theoretical
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predictions (3.6). This is expected, and can be shown in two different ways: (i) writing
the continuity of the residual energy spectrum ER in kL = 1/L provides

kσ−p+2
L ∼ ε

b0
, (A 9)

according to (A 8), which straightforwardly gives αR = α; and (ii) considering the
previous characteristic time scale argument giving ε ∼ b0u2/L, and combining with
(3.5), yields again αR = α.

Appendix B. Details on statistics in physical space
In this appendix, some details about the statistics in physical space are provided,

first regarding the evolution equations of the total energy K and dissipation rate ε,
and secondly about the 4/5th law in isotropic balanced MHD turbulence.

B.1. Evolution equations of K and ε
Some details are first given on the evolution equation of the total energy K. The
evolution equations of KV and KB read

∂KV

∂t
=−εV +

〈
uibj

∂bi

∂xj

〉
,

∂KB

∂t
=−εB +

〈
bibj

∂ui

∂xj

〉
. (B 1a,b)

Since because of homogeneity 〈uibj∂jbi〉 = −〈bibj∂jui〉, the evolution equation of the
total energy K reads

∂K
∂t
=−ε, (B 2)

which is similar to the equation for the kinetic energy KV(t) in HIT. Further
identifying with the sum of equations (2.37) and (2.38) integrated over the whole
wavenumber space provides∫ ∞

0
(SV + SB(mag)) dk= 0,

∫ ∞
0

SB(mag)dk=−
∫ ∞

0
SV(mag) dk=

〈
bibj

∂ui

∂xj

〉
, (B 3a,b)

where 〈bibj∂jui〉 reflects either the production of energy through the Laplace force, or
the stretching of the magnetic field. In can be shown that in fully isotropic turbulence,
with simple tensorial arguments as in Pope (2000), one has 〈bibj∂jui〉 = 15〈b2

1 ∂1u1〉/2.
Now, regarding the total energy dissipation rate ε. One needs the equations of εV

and εB, obtained by deriving with respect to xj the equations (2.1) and (2.2) of ui and
bi, and using ensemble averages after multiplication by ∂jui and ∂jbi respectively. This
yields

∂

∂t

( εV

2ν

)
+
〈
∂ui

∂xj

∂ui

∂xl

∂ul

∂xj

〉
︸ ︷︷ ︸

(I)

+
〈

ul
∂ui

∂xj

∂2ui

∂xl∂xj

〉
︸ ︷︷ ︸

(II)

=−
〈
∂ui

∂xj

∂2p∗

∂xi∂xj

〉
︸ ︷︷ ︸

(III)

+
〈
∂ui

∂xj

∂bi

∂xl

∂bl

∂xj

〉
︸ ︷︷ ︸

(IV)

+
〈

bl
∂ui

∂xj

∂2bi

∂xl∂xj

〉
︸ ︷︷ ︸

(V)

+ ν
〈
∂ui

∂xj

∂3ui

∂xj∂xl∂xl

〉
︸ ︷︷ ︸

(VI)

,
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(B 4)
∂

∂t

(
εB

2η

)
+
〈
∂ul

∂xj

∂bi

∂xl

∂bi

∂xj

〉
︸ ︷︷ ︸

(IV)

+
〈

ul
∂bi

∂xj

∂2bi

∂xl∂xj

〉
︸ ︷︷ ︸

(II)

=
〈
∂ui

∂xl

∂bi

∂xj

∂bl

∂xj

〉
︸ ︷︷ ︸

(IV)

+
〈

bl
∂bi

∂xj

∂2ui

∂xl∂xj

〉
︸ ︷︷ ︸

(V)

+ η
〈
∂ui

∂xj

∂3ui

∂xj∂xl∂xl

〉
︸ ︷︷ ︸

(VI)

. (B 5)

These two equations can be strongly simplified by considering independently the six
different groups of terms. First, using homogeneity, incompressibility and classical
tensorial algebra given in Pope (2000), one can show that (I)= 35〈(∂1u1)

3〉/2. The two
(II) terms are zero because of homogeneity, as found in Betchov (1963) for the one
with bi. The pressure term (III) is zero because of homogeneity as well. The three (IV)
terms need further investigation through the sixth-order tensor (B 7). The sum of the
two (V) terms is also zero because of homogeneity. Finally, the two (VI) dissipative
terms can be written as in (B 6), again because of homogeneity, and one has further
〈∂2

jlui ∂
2
jlui〉 = 〈∂2

jjui ∂
2
llui〉. With these different features, the sum of the two equations

yields (B 6).

B.2. Simplification of the equation for ε
In this part, the evolution equation of the total dissipation rate ε in the framework
of balanced IMHDT is addressed, in order to simplify its different terms. After some
algebra detailed in the previous part, the evolution equation reads

∂ε

∂t
= 2ν

(〈
∂ui

∂xj

∂bi

∂xl

∂bl

∂xj

〉
−
〈
∂ui

∂xj

∂ui

∂xl

∂ul

∂xj

〉)
− 2ν2

〈
∂2ui

∂xl∂xl

∂2ui

∂xj∂xj

〉
+ 2η

(〈
∂ui

∂xj

∂bi

∂xl

∂bj

∂xl

〉
−
〈
∂ul

∂xj

∂bi

∂xl

∂bi

∂xj

〉)
− 2η2

〈
∂2bi

∂xl∂xl

∂2bi

∂xj∂xj

〉
. (B 6)

It is well known that the triple velocity correlation is linked to the velocity derivative
skewness, and one has 2〈∂jui∂lui∂jul〉 = 35〈(∂1u1)

3〉. The term in 2ν2 is linked to the
so-called palinstrophy, and one has 〈∂2

jjui ∂
2
llui〉 = 35〈(∂2

11u1)
2〉 (Ristorcelli 2006). One

can deduce by analogy that the dissipative term in 2η2 is 〈∂2
jjbi ∂

2
llbi〉 = 35〈(∂2

11b1)
2〉,

which could be called a magnetic palinstrophy.
In what follows, we are interested into the three mixed-derivative kinetic-magnetic

correlation terms, more complicated to handle than the triple velocity one. For this
purpose, we define the sixth-order tensor

H ijlnpq =
〈
∂bi

∂xn

∂bj

∂xp

∂ul

∂xq

〉
. (B 7)

In a fully isotropic framework, this tensor has fifteen non-zero components, expressed
as products of Kronecker symbols such as δijδlnδpq. Because of symmetries in (B 7),
only nine terms are independent:

H ijlnpq = c1δij(δlnδpq + δlpδnq)+ c2(δipδjqδln + δiqδjnδlp)+ c3δnp(δilδjq + δiqδjl)

+ c4(δilδjnδpq + δipδjlδnq)+ c5(δilδjnδnq + δinδjlδpq)+ c6(δinδjqδlp + δiqδjpδln)
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+ c7δinδjpδlq + c8δijδlqδnp + c9δipδjnδjq. (B 8)

The three terms of interest in the equation of ε can be expressed as 2νH ililjj +
2η(H ijillj − H iilljj). Unlike the term (I) which involves only the velocity field, it
is not possible to express all nine constants c1, . . . , c9 as functions of one only.
Nevertheless, some interesting relations can be found. First, incompressibility provides
three equations 2c1 + 2c3 + 3c8 = 0, 2c2 + 2c4 + 3c9 = 0 and 2c5 + 2c6 + 3c7 = 0.
Further using homogeneity, one obtains the crucial result H ijljli = 0 – which stems
from 〈ul∂jbi ∂

2
ilbj〉 = 0, as already obtained by Betchov (1963) – which gives

15c8 = 24c2 + 6c4 + 4c5 + 16c6. Fortunately, all nine constants are not necessary.
Indeed, one gets〈

∂ui

∂xj

∂bi

∂xl

∂bj

∂xl

〉
−
〈
∂ul

∂xj

∂bi

∂xl

∂bi

∂xj

〉
= H ijillj − H iilljj = 30(c3 − c1), (B 9)〈

∂ui

∂xj

∂bi

∂xl

∂bl

∂xj

〉
= H ililjj = 18(c4 − c2)+ 12(c5 − c6). (B 10)

The final step is rather tedious and consists into choosing wisely various components
of H ijlnpq to determine the remaining constants. It follows that three simple relations
can be found, c9 = −2〈∂1u1 ∂3b1 ∂1b3〉, −2(c7 + c8 + c9) = 〈∂1u1 (∂1b1)

2〉 and 2(c3 −
c1) = 〈∂1u1 (∂3b1)

2〉 − 〈∂1u1 (∂1b3)
2〉. Combining all these equations yields the final

important results

2ν
〈
∂ui

∂xj

∂bi

∂xl

∂bl

∂xj

〉
= 30ν

[
2
〈
∂u1

∂x1

∂b1

∂x3

∂b3

∂x1

〉
+
〈
∂u1

∂x1

(
∂b1

∂x1

)2
〉]

, (B 11)

2η
[〈
∂ui

∂xj

∂bi

∂xl

∂bj

∂xl

〉
−
〈
∂ul

∂xj

∂bi

∂xl

∂bi

∂xj

〉]
= 30η

[〈
∂u1

∂x1

(
∂b1

∂x3

)2
〉
−
〈
∂u1

∂x1

(
∂b3

∂x1

)2
〉]

.

(B 12)

These two expressions quite simplify the production terms in the equation of the total
dissipation rate (B 6).

B.3. The 4/5th law of isotropic MHD turbulence
In this section, we investigate further the terms labelled (i) and (ii), which appear in
the evolution equation (5.11) of R + B. Three two-point third-order correlations are
involved, namely

φ
(uuu)
ijl (r, t)= 〈uiuju′l〉, φ

(bbu)
ijl (r, t)= 〈bibju′l〉, φ

(ubb)
ijl (r, t)= 〈uibjb′l〉, (B 13a−c)

which are true tensors. The two first ones are symmetric in their two first indices, and
thus easier to handle. It appears that using only the evolution equation of R, and thus
the term (i), one can recover the 4/5th law of isotropic MHD turbulence (Politano &
Pouquet 1998b; Yousef, Rincon & Schekochihin 2007)

〈δu3
L〉 − 6〈b2

Lu′L〉 =− 4
5 r ε, (B 14)

as done in Yoshimatsu (2012). The main features of the derivation are recalled here,
along with some considerations about the term (ii).
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The term (i) depends on φ(uuu)
ili − φ(bbu)

ili . After some classical algebra (developed in
Politano et al. (2003), Briard & Gomez (2017) for instance) these two tensors can be
expressed as

φ
(xxu)
ijl (r, t)= kx − rk′x

2r3
rirjrl − kx

2r
δijrl + 2kx + rk′x

4r
(δilrj + δjlri), (B 15)

where the subscript x stands for either u or b, ku=〈u2
Lu′L〉, kb=〈b2

Lu′L〉 and the prime ′
on the correlation kx refers to the spatial derivative k′x= ∂rkx. Using homogeneity, one
can further show that ku = 〈δu3

L〉/6. Moreover, from the evolution equations (B 1) of
KV and KB, it follows that

〈δuiδui〉 = 4KV(t)− 4R(r, t),
∂KV

∂t
=−εV − εB − ∂KB

∂t
. (B 16a,b)

The evolution equation of R thus becomes

∂

∂t
〈δuiδui〉 + 4

∂KB

∂t
=−8ν

r2

∂

∂r

(
r2 ∂R
∂r

)
− 2

r2

∂

∂r

(
1
r
∂

∂r
(r4(ku − kb))

)
− 4ε. (B 17)

Identification with (5.11) provides

〈δuLδuiδui〉 = 1
3r3

∂

∂r
(r4〈δu3

L〉), 〈bLbiu′i〉 =
1

2r3

∂

∂r
(r4〈b2

Lu′L〉), (B 18a,b)

where the first of the two relations is usual for HIT. Further dropping the two time
derivative and viscous dissipation terms in (B 17), and integrating twice with respect
to r yields the 4/5th law (B 14).

Some words can be said about the term (ii) in the equation of B(r, t), which
depends on φ(ubb)

lii − φ(ubb)
ili . The latter tensor can be expressed as

φ
(ubb)
ijl (r, t)= A− B−C−D

r3
rirjrl + B

r
δijrl + C

r
δilrj + D

r
δjlri, (B 19)

where A(r)= 〈uLbLb′L〉, B(r)= 〈uNbNb′L〉, C(r)= 〈uNbLb′N〉, D(r)= 〈uLbNb′N〉, with A+
2B= 0 and C+D=A+ rA′/2, so that φ(ubb)

iil = 0, where the subscript ()N refers either
to ()2 or ()3. Expanding (ii) yields

∂

∂rl
〈ulbib′i − uiblb′i〉 =

2
r2

∂

∂r

(
r2(D−C)

)
, (B 20)

and the quantity D−C can be linked to

〈δuLδbiδbi〉 − 4〈bLuiδbi〉 = 8(D−C), (B 21)

which appears in the calculations of Yoshimatsu (2012). Finally, identification between
the latter reference and (5.1) provides an additional relation

〈δbLδuiδbi〉 = 2 (〈bLuiδbi〉 + 〈bLbiδui〉) . (B 22)
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