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ABSTRACT

0) ∼ kσ , unlike unstably stratified homogeneous turbulence where
γ strongly depends on σ . The MCS model relies on the truncation
at the second order of the spectral two-point velocity correlation
expansion into spherical harmonics. The expansion is here pursued
at the next even order, the fourth one: the noteworthy consequence
is that γ is decreased compared to MCS and is thus closer to values
obtained in direct numerical simulations and experiments. Finally,
some analytical considerations about odd-order contributions in the
expansion of polarisation anisotropy are proposed.

1. Introduction

Natural turbulent flows represent a great challenge in the turbulence community in terms
ofmodelling. Indeed, in atmospheric turbulent flows, for example, several complexmecha-
nisms strongly interact in an intricatemanner, on distinct characteristic time scales, such as
rotation, stratification, helicity, and shear. Among these mechanisms, shear flows are prob-
ably the most complex, since no symmetry at all survive, unlike rotation and stratification
which nevertheless remain statistically axisymmetric.

In the past years, the authors have analysed separately each of these configurations
with the help of an adapted eddy-damped quasi-normal Markovian (EDQNM) closure
able of handling strongly anisotropic flows, in order to better understand what are the
intrinsic properties of each mechanism. A significant amount of results, both theoretical
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and numerical, were exposed in various publications [1–9], and still a lot of work needs
to be done regarding shear flows specifically. Indeed, the anisotropic EDQNM model
developed in Mons, Cambon, and Sagaut (MCS) [1] handles very satisfactorily various
straining processes, for instance when the mean-velocity gradient matrix is symmetric,
like in axisymmetric contractions or expansions, or in plane distortions. However, for pure
plane shear flows where this matrix is not symmetric and has only one non-zero compo-
nent, theMCSmodel gives a kinetic energy exponential growth rate γ larger than common
values obtained in direct numerical simulations (DNS): see [3] for a review. Despite the
clear tendency of increasing values of γ in more recent DNS [10,11] which can reach
larger Reynolds numbers with a better spatial resolution, a discrepancy still remains. This
quantitative issue regarding the value of γ is probably due to a lack of angular informa-
tion regarding the distribution of anisotropy within our anisotropic EDQNM modelling.
Consequently, we focus here on pure plane shear flows, a particular case of shear-driven
turbulence. The reader should nevertheless keep in mind that the model is more general
and can handle various shear-driven configurations.

In homogeneous incompressible turbulence, the spectral velocity–velocity correlation
R̂ij can be exactly decomposed into directional and polarisation anisotropies [12,13], which
are quantified by the two scalar quantities E(k, t) and Z(k, t), which both depend on time
and on the wavevector k. In order to deal with analytical expressions in the modelling of
anisotropy, E and Z are expanded into spherical harmonics, and this expansion is further
truncated at the first non-trivial order, the second one, the zeroth-order being the isotropic
state where Z=0 and E = E/(4πk2), with E being the kinetic energy spectrum. To further
reduce the numerical cost of the simulations, the detailed equations for the directional and
polarisation anisotropies are spherically averaged.

The numerical results obtained with such an approximation were thoroughly discussed
in the previously mentioned references and compared quantitatively well with both DNS
and experiments, in various configurations, from axisymmetric contractions, expansions,
and plane distortions [1,3], to the transport of a passive scalar field in the presence of a
mean gradient with a variable Prandtl number [2,14], along with the case of unstably strat-
ified turbulence [4]. However, for shear flows, the model could not recover accurately the
anisotropy distribution by investigating, for instance, several components of the global
indicator bij = 〈uiuj〉/2K − δij/3, where K = ∫∞

0 E(k) dk is the kinetic energy, nor the
asymptotic value of the kinetic exponential growth rate γ as said earlier. Despite these
defects, a good agreement was found for the shear parameter S∗ = 2KS/ε, where S is the
shear rate and ε the kinetic energy dissipation rate, an important quantity for one-point
modelling [3]. Thus, it was concluded that anisotropy was not well-enough captured, and
more precisely polarisation anisotropy [15], with notably a too large value for b13 (for
S = −∂U1/∂x3). So far, it was impossible to quantify the anisotropic information lost by
the second-order truncation. Therefore, we propose here to go beyond the second-order
truncation and deal analytically with the fourth-order, to know for sure if this allows to
decrease the exponential growth rate γ or not. The derivation itself is rather complex and
constitutes one of the main results of the present work. The second significant finding is an
analytical proof showing an essential difference between the dynamics of shear flows and
unstably stratified turbulence, configurations both analysed with the anisotropic EDQNM
model, and in which the kinetic energy grows exponentially, but with completely different
properties.



It is worth recalling that the present model addresses only second-ordermoments of the
velocity field, so that high-order statistics are not available. It notably implies thatwe cannot
investigate intermittent properties of shear flows [16]. However, intermittent statistics are
often observed for high-order moments of the velocity field [16–19] so that it remains
compatible with our approach. Indeed, it has been observed with the model in [1,3] that
small scales of the velocity field second-ordermoments return to isotropy at large Reynolds
numbers, a feature consistent with DNS and experiments [20–22]: nevertheless, some per-
spectives to study higher-order statistics with similar modelling techniques are discussed
in the concluding section.

Finally, let us mention that other tools to analyse anisotropic features of shear flows are
possible. For example, our approach is consistent with the irreducible representation of
the SO(3) symmetry group that yields expansions in terms of spherical harmonics as well
[23]. Applications to shear flows are also developed directly in physical space, with focus
on anisotropic structure functions (see [24] for a review): note that expansions in terms of
the separation vector r in physical space and in terms of k in spectral space can be partly
reconciled [8]. In a recent work [25], the basis functions of the SO(3) symmetry groupwere
used to derive an analytical dynamical model in the rapid distortion linear limit, instead of
analysing statistics resulting fromDNS as usual. This is in the spirit of the present approach
where evolution equations, fully non-linear, however, arewritten for tensors corresponding
to these basis functions.

The paper is organised as follows: as a starting point, the MCS model with the second-
order truncation of the spherical harmonics expansion is recalled in Section 2, with some
details gathered in Appendix 1. A first new result is presented regarding the independence
of the exponential growth rate with the large scales initial conditions. Then, the fourth-
order modelling is presented in Section 3 along with the corresponding new production
and non-linear terms. Finally, in Section 4, some analytical developments about odd-order
terms of the expansion for the polarisation Z are presented, unfortunately inconclusive.
Discussions and further perspectives are gathered in Section 5.

2. The anisotropic EDQNMmodelling for homogeneous turbulence

In this part, the main elements of the MCS anisotropic spectral model are recalled for
clarity. First, the so-called E–Z decomposition of the spectral two-point second-order
velocity–velocity correlation is presented. Afterwards, themodelling of anisotropy through
spherically averaged deviatoric descriptors is exposed, along with brief details about the
EDQNM procedure used to close the non-linear terms in the evolution equations. Then,
the final spherically averaged equations for homogeneous turbulence are derived.

2.1. The E–Z decomposition

The spectral two-point second-order velocity–velocity correlation, or spectral Reynolds
tensor, is defined as

R̂ij(k, t)δ(k − p) = 〈û∗
i (p, t)ûj(k, t)〉, (1)

where ·̂ denotes the Fourier transform, (·)∗ is the complex conjugate, 〈·〉 is an ensemble
average, and k and p are wavevectors. The tensor R̂ij further verifies the so-called Craya



equation, namely(
∂

∂t
− Alnkl

∂

∂kn
+ 2νk2

)
R̂ij(k) + Min(k)R̂nj(k) + Mjn(k)R̂ni(k) = TNL

ij (k), (2)

where ν is the kinematic viscosity, TNL
ij is the total non-linear transfer, Mij(k) = (δin −

2αiαn)Anj with αi = ki/k, and Aln = ∂Ul/∂xn the mean-velocity gradient matrix, whose
symmetric and antisymmetric parts are respectively identified with + and − superscripts
in what follows.

Since R̂ij is a homogeneous, symmetric, and solenoidal second-order tensor, it can be
intrinsically and exactly decomposed into three distinct parts [12]

R̂ij(k) = R̂(iso)
ij (k) + R̂(dir)

ij (k) + R̂(pol)
ij (k), (3)

= E(k)
4πk2

Pij(k) +
(
E(k) − E(k)

4πk2

)
Pij(k) + �(Z(k)Ni(k)Nj(k)), (4)

where Pij = δij − αiαj is a projector and Ni is a helical mode [13,26], perpendicular to the
wavevector k. These three parts in the decomposition (4) refer to the isotropic contribution,
the directional anisotropy, which is the difference between the energy along the wavevector
k and the spherically averaged energy, and the polarisation anisotropy, which reflects the
difference of energy between components of R̂ij. The kinetic energy density E(k, t) is linked
to directional anisotropy and is connected to the kinetic energy spectrum E(k, t) through
a spherical integration on a sphere Sk of radius k

E(k, t) =
∫
Sk
E(k, t) d2k =

∫
Sk

R̂ii(k, t)
2

d2k, (5)

whereas the complex-valued scalar Z(k, t) reflects polarisation anisotropy and reads

Z(k, t) = R̂ij(k, t)
2

Ni(−k)Nj(−k). (6)

Both E and Z verify exact evolution equations which can be found in several references
[1,8], namely(

∂

∂t
− Alnkl

∂

∂kn
+ 2νk2

)
E − A+

ij αiαjE + A+
ij �(ZNiNj) = TE , (7)

(
∂

∂t
− Alnkl

∂

∂kn
+ 2νk2

)
Z + 2iZ
CH + A+

ij N
∗
i N

∗
j E + AijN∗

i NjZ = TZ , (8)

where 
CH reflects the motion of the time-evolving Craya–Herring frame with respect to
a fixed reference [1,27], and with TE = TNL

ii /2 and TZ = TNL
ij N∗

i N
∗
j /2. One could solve

these exact evolution equations, but this would be extremely demanding in terms of com-
putational resources. Note that considering the variables (kE) and (kZ) instead of only E
and Z simplifies the equations, as done in [7].



Instead, we choose to model anisotropy in two steps: first, the non-linear directional
and polarisation transfers TE and TZ are closed by a classical EDQNM procedure. After-
wards, both E and Z are expanded into spherical harmonics to obtain explicit expressions
for the directional and polarisation parts of the spectral Reynolds tensor. This expansion
was further truncated at the second order for the sake of simplicity in [1]: the immediate
drawback is the loss of angular anisotropic informationwhichmakes the production terms,
linear with the mean-velocity gradient matrix Aln, not exact anymore. The consequences
of such an approximation were thoroughly examined and discussed in several references
[1–3], so that they are not further argued here. The aim of this study is precisely to improve
the modelling of anisotropy through a truncation at the next even order, the fourth-one, in
Section 3. Before that, for consistency and clarity, the details of the truncation at the second-
order are recalled in the following part: in addition, a new theoretical feature is presented
to better understand the exponential growth rate of kinetic energy obtained numerically
with the model.

2.2. Truncated expansion of E and Z at the second-order

The expansion into spherical harmonics of E and Z is the key ingredient for the modelling
of anisotropy. Such expansions read

E(k) = E0(k)(1 + U(dir)2
ij (k)αiαj + U(dir)4

ijpq (k)αiαjαpαq + · · · ), (9)

Z(k) = 1
2
E0(k)(U(pol)2

ij (k) + U(pol)4
ijpq (k)αpαq + · · · )N∗

i (k)N
∗
j (k), (10)

with E0 = E/(4πk2), and where time dependence has been omitted for clarity. The deter-
mination of the dynamics of the symmetric and deviatoric second-order tensors U(dir)2

ij

andU(pol)2
ij was the topic of [1], whereas the determination of that of the fourth-order ten-

sors U(dir)4
ijpq and U(pol)4

ijpq constitutes one of the two theoretical contributions of this work,
addressed in detail in Section 3. Odd-order terms of the expansion of E are exactly zero,
which comes from the symmetry of R̂ij [12,23]; the zeroth-order corresponds to isotropy,
configuration in which the polarisation anisotropy Z=0. The possibility of non-zero
odd-order terms for Z is discussed later on in Section 4.

As mentioned before, the spherical average transforms the k-dependence of the two-
point second-order correlations into a k one and thus strongly reduces the computational
time of the simulations but also causes a loss of information regarding the distribution of
anisotropy of the flow. In [1], part of this information was nevertheless recovered, thanks
to the deviatoric and symmetric tensors H(dir)

ij and H(pol)
ij , which can be linked to U(dir)2

ij

and U(pol)2
ij through

2E(k, t)H(dir)
ij (k, t) =

∫
Sk
R̂(dir)
ij (k, t) d2k = − 2

15
U(dir)2
ij (k, t)E(k, t), (11)

2E(k, t)H(pol)
ij (k, t) =

∫
Sk
R̂(pol)
ij (k, t) d2k = 2

5
U(pol)2
ij (k, t)E(k, t). (12)



Hence, the second-order spectral tensor is given by

φij(k, t) =
∫
Sk
R̂ij(k, t) d2k = 2E(k, t)

(
δij

3
+ H(dir)

ij (k, t) + H(pol)
ij (k, t)

)
. (13)

With these expressions (11) and (12), it is thus possible to determine the closed expressions
of E and Z at the second-order, namely

E(k) = E0(k)(1 − 15H(dir)
ij (k)αiαj), Z(k) = 5

2
E0(k)H(pol)

ij (k)N∗
i (k)N

∗
j (k). (14)

For now, only the truncated expansions at the second-order are considered, so that the
modelled spectral Reynolds tensor reads

R̂ij = E0Pij(1 − 15H(dir)
pq αpαq)︸ ︷︷ ︸

R̂e2ij

+ 5E0
(
PinPjmH

(pol)
mn + 1

2
PijH

(pol)
pq αpαq

)
︸ ︷︷ ︸

R̂z2ij

. (15)

In the following section, the evolution equations of the three main spectra E, EH(dir)
ij , and

EH(pol)
ij are given within the anisotropic EDQNM framework.

2.3. The EDQNMprocedure and spherically averaged equations

The final step of the anisotropic EDQNMmodelling is to close the non-linear transfers TE
and TZ using a classical EDQNM procedure. Details about the fundamentals of EDQNM
can be found, for instance, in [28] for HIT, or in [1] with the anisotropic formalism. The
modelled equation (15) of R̂ij is further injected into the quasi-normal expression of the
non-linear transfers. The eddy-damping term is kept isotropic for generality purposes and
also to avoid the introduction of new arbitrary constants: this has proven to be relevant (in
non-rotating flows) in various comparisons performed against DNS and experiments in
different configurations [1–4].

After some algebra, one obtains the closed expressions of the non-linear transfers TE
and TZ in the evolution equations (7) and (8) of E and Z

TE = 2
∫

θkpqkp[(E ′′ + �X′′)((xy + z3)(E ′ − E) − z(1 − z2)(�X′ − �X))

+ 
X′′(1 − z2)(x
X − y
X′)] d3p, (16)

TZ = 2
∫

θkpqkp e−2iλ[(E ′′ + �X′′)((xy + z3)(�X′ − X) − z(1 − z2)(E ′ − E)

+ i(y2 − z2)
X′) + i
X′′(1 − z2)(x(E + X) − iy
X′)] d3p, (17)

with E(k, t) = E , E(p, t) = E ′, E(q, t) = E ′′, X = Z(k, t) e2iλ, X′ = Z(p, t) e2iλ′
, and X′′ =

Z(q, t) e2iλ′′
. The λ, λ′, and λ′′ are rotation angles around k, p, and q which permit to per-

form the calculations in a frame more adapted than the Craya–Herring one [27]. x, y, and
z are the cosines of the angles formed by p and q, q and k, and k and p, respectively. And



θkpq is the characteristic time of the third-order correlations, defined more precisely in
Appendix 1. Furthermore, quadratic contributions of anisotropy (terms like H(dir)

il H(dir)
jl ,

H(dir)
il H(pol)

jl , . . .) were discarded in the non-linear transfers, because they were assumed to
be negligible [1,3]: this assumption is successfully assessed for the first time in Section 2.5.

Consequently, after spherical averaging, one ends up with three generalised Lin equa-
tions that describe the evolution of the isotropic, directional and polarisation parts of the
turbulent velocity field, given under the same compact expression(

∂

∂t
+ 2νk2

)
E(k, t) = SL(iso)(k, t) + SNL(iso)(k, t), (18)

(
∂

∂t
+ 2νk2

)
E(k, t)H(dir)

ij (k, t) = SL(dir)ij (k, t) + SNL(dir)ij (k, t), (19)

(
∂

∂t
+ 2νk2

)
E(k, t)H(pol)

ij (k, t) = SL(pol)ij (k) + SNL(pol)ij (k, t), (20)

where SNL(iso), SNL(dir)ij , and SNL(pol)ij are the non-linear spherically averaged transfers, and

SL(iso), SL(dir)ij , and SL(pol)ij are the production terms resulting from the presence of a mean-
velocity gradient. The explicit expressions of these linear and non-linear transfers are given
in Appendix 1.

Thanks to the previous spectral anisotropy descriptorsH(dir)
ij andH(pol)

ij , one can express
the deviatoric normalised part of the Reynolds stress tensor, which refers to the global
anisotropy of the flow, according to

bij(t) = 〈uiuj〉
2K

− δij

3
= 1

K(t)

∫ ∞

0
E(k, t)[H(dir)

ij (k, t) + H(pol)
ij (k, t)] dk. (21)

The three generalised Lin equations (18), (19), and (20) constitute the main result of MCS.
This spectral modelling was then applied in [3] exclusively for shear flows. Notably, it was
shown in the latter reference that:

• The kinetic energy grows exponentially at large St and Reynolds numbers at the rate
0.33 ≤ γ ≤ 0.34, with K ∼ exp(γ St).

• This exponential growth rate γ is found numerically to be independent of the
large scales initial conditions σ , where E(k < kL) ∼ kσ , with kL being the integral
wavenumber [29]. Such an independence to large scales was also reported in [30] for
shear flows.

• This value γ � 0.33 is higher than common values obtained in DNS and experi-
ments, as reported in Table 1 of [3], even though more recent numerical studies
report larger exponential growth rates.

In the following part, we come back on both this value for γ and on its independence
with regard to σ with theoretical arguments. In addition, a qualitative comparison is made
with the asymptotic regimes of unstably stratified homogeneous turbulence, where the
kinetic energy also grows exponentially but with a strong dependence on σ .



2.4. The exponential growth rate γ of kinetic energy

In this section, we provide theoretical arguments to explain both the rather large value of
the kinetic energy exponential growth rate γ = 0.33 in [1,3] and its independence with
regard to large scales’ initial conditions σ : in particular, the latter point means that at suf-
ficiently large St or Reynolds numbers, the growth rate is similar for Saffman (σ = 2) and
Batchelor (σ = 4) turbulence.

In a sustained shear flow, kinetic energy is continuously produced by the mean-velocity
gradient and verifies the evolution equation

dK
dt

= SR13(t) − ε(t),
dU1

dx3
= −S, Aij = dUi

dxj
, (22)

where ε is the kinetic energy dissipation rate. Kinetic energy eventually grows exponen-
tially [27,31,32] at a rate γ = 2b13 − ε/KS when the global anisotropy indicators bij have
reached an asymptotic state.

Values of γ obtained in experiments [33–35] and inDNS [10,11,17,20,36,37] are smaller
than the γ = 0.33 obtained with the present anisotropic EDQNM modelling, and some
values are reported in Table 1 of [3]. In what follows, we first bring theoretical arguments
which were not provided in [1,3] to justify the value γ = 0.33 obtained with the model. To
this end, we use the methodology of Soulard et al. [38] who derived a prediction for the
growth rate of the Rayleigh–Taylor mixing zone length as a function of the infrared slope
σ . These theoretical arguments were also applied to the framework of unstably stratified
homogeneous turbulence (USHT) in [4,5,38] to determine the exponential growth rate of
the kinetic energy: results will be discussed hereafter.

The demonstration essentially relies on two features: (i) the linear dynamics of large
scales dominated by the anisotropy production and (ii) the self-similarity of the kinetic
energy spectrum. In the self-similar state, the kinetic energy and its dissipation rate evolve
as K ∼ ε ∼ exp(γ St): combining this with dimensional analysis for the integral scale L ∼
K3/2/ε yields L ∼ exp(γ St/2). Let us call γE the exponential growth rate of the kinetic
energy spectrum large scales. Assuming that themain contribution to kinetic energy comes
from large scales, one has

K(t) =
∫ ∞

0
E(k, t) dk �

∫ kL

0
kσ exp(γESt) dk = kLσ+1

σ + 1
exp(γESt). (23)

Further using the self-similarity hypothesis for the kinetic energy and the integral scale
kL ∼ 1/L ∼ exp(−γ St/2), one obtains

γE = γ

2
(σ + 3). (24)

This result can also be obtained differently, in a manner analogous to [32]: assuming that
at large scales the kinetic energy is given by K ∼ S2L2, one can expand the kinetic energy
spectrum according to

E(k < kL, t) = K(t)L(t)(kL(t))σ = S2L(t)σ+3kσ ∼ S2 exp
[
σ + 3
2

γ St
]
kσ , (25)



which further illustrates that the self-similar evolution of the integral scale is crucial in the
demonstration. It is worth noting that these two equations hold for both shear flows and
USHT, if one replaces S by the stratification frequency in the latter case.

Then, the exponential growth rate γE is also given by the largest eigenvalue �max of
the linear operator of the generalised Lin equations system (18), (19), and (20). The linear
operator of shear flows verifies, dropping the non-linear and viscous terms and using the
expression (25) of self-similarity

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
EH(dir)

11

EH(dir)
13

EH(dir)
33

EH(pol)
11

EH(pol)
13

EH(pol)
33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2(σ + 2) 0 0 2 0
0 0 − 2(σ+11)

21 0 0 2
21 0

(σ−1)
30

3−σ
7 0 − 4+σ

7
1
7 0 1

7
0 0 2(10−σ)

21 0 0 2
21 0

0 0 4
7 0 0 2(σ+4)

21 0
1
5

6
7 0 6

7
3σ−2
21 0 3σ+5

21
0 0 4

7 0 0 2(σ−3)
21 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

EH(dir)
11

EH(dir)
13

EH(dir)
33

EH(pol)
11

EH(pol)
13

EH(pol)
33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

Note that (i) the spanwise component does not appear sinceH22 = −H11 − H33 because of
incompressibility and (ii) each component of EHij was assumed to behave spatially at large
scales like ∼ kσ , which is verified numerically. The maximum real eigenvalue �max(σ ) of
the linear operator is given by

�max(σ ) = 1
21

√
10

[−1112 + 267σ(1 + σ)

+ 49
√
3664 − 168σ − 159σ 2 + 18σ 3 + 9σ 4]1/2. (27)

The variations of �max as a function of σ are presented in Figure 1(a) (dashed line): one
can note that for common values of the infrared slope, basically from σ = 1 to σ = 4,
there is a strong variation of �max. Recall that �max was obtained by assuming that the
dynamics of the large scales is linear: this is further assessed in Figure 1(b)where the budget
terms of the evolution equation (18) of E(k, t) are displayed: it is clear that at large scales
the linear production term is much larger than the non-linear transfer term. Figure 1(b)
further shows two features: (i) at small scales, before theKolmogorovwavenumber kη, non-
linear transfers balance dissipation. And (ii) the linear mechanisms are the most intense
for kL < k < kS, where kS =

√
S3/ε is the shear wavenumber. The dominance of linear

terms at large scales can also be observed in Figure 1(c), where the absolute values of the



Figure 1. (a) Theoretical prediction for the kinetic energy exponential growth rate γth =
2�max(σ )/(σ + 3), where �max is provided in Equation (27). The numerical values in grey repre-
sent the expected γth for the classical integer values of the infrared slope σ , whereas the dash-dot
line represents the value obtained by the anisotropic EDQNM modelling γ = 0.33. (b) Budget
terms of the equation of E(k, t) given in Equation (18), for σ = 2 and Reλ(St = 50) = 2.4×104,
normalised by ε, along with the integral, shear and Kolmogorov wavenumbers kL, kS, and kη . (c) Ratio
of the linear to non-linear transfers, for the same configuration as (b). The total transfer is given by
S(tot)ij = 2(δijS(iso)/3 + S(dir)ij + S(pol)ij ).

linear to non-linear terms ratios are presented for the components ()11, ()13, and ()33. On
the contrary, for k > kS, the non-linear transfers drive the dynamics, as observed by values
of the ratios much lower than unity.

The final theoretical prediction for the kinetic energy exponential growth rate γth is
obtained by equating the most amplified eigenvalue and the kinetic energy spectrum
growth rate

γE = �max(σ ) ⇔ γth = 2�max(σ )

σ + 3
, (28)

and is presented in Figure 1(a), where it is clear that the true exponential growth rate of
the kinetic energy (− curve) accounting for non-linearities is much lower than the linear
prediction (−− curve), and almost independent of the large scales initial conditions σ . In



particular, one has for the integer values of the infrared slope γth(σ = 1) = 0.358, γth(σ =
2) = 0.339, γth(σ = 3) = 0.346, and γth(σ = 4) = 0.367.

The implications of Equation (28) and the numerical results in Figure 1(a) are twofold.
First, there is a good agreement between the new theoretical prediction (28) – which relies
on the linear dynamics at large scales and the self-similarity of the kinetic energy spectrum
– and the numerical simulations of [1,3], which gave a value around 0.33 ≤ γ ≤ 0.34, as
recalled for clarity in Figure 3(a) in grey.

Secondly, one can remark that the predictions for the exponential growth rate hardly
depend on σ in Figure 1(a), which is also in agreement with the simulations of [3]. This
is of great theoretical interest because it strongly differs from USHT, where kinetic energy
also grows exponentially, but with a strong dependence on large scales according to the
theoretical prediction [5]

γUSHT = 4
σ + 3

, (29)

where the kinetic energy exponential growth rate γUSHT varies from1 to 4/7 forσ = 1 up to
σ = 4. It is worth noting that the present model is able to capture the strong dependence
of the kinetic energy exponential growth rate in USHT as well [4]. The reason why the
asymptotic anisotropic states strongly differ between shear flows and USHT is because the
linear operator of the production terms does not depend on σ in the latter case. Indeed, the
σ -contributions in the linear operator of shear flows appear due to the spatial-derivative
terms in ∂/∂k (see Appendix 1), which arise from the mean-flow advection term in the
Craya equation (2): basically, they balance the σ -dependence of γE.

In conclusion, it has been shown analytically within the anisotropic EDQNMmodelling
that the kinetic energy exponential growth rate in shear flows is independent of the large
scales initial conditions σ , consistently with self-similarity arguments. This independence
strongly differs from the asymptotic exponential growth rate inUSHTwhich depends onσ .
Themodel is able to recover both phenomenologies: this is the first theoretical contribution
of this paper.

2.5. Quadratic contributions of anisotropy

For the modelling of non-linear transfers, it was assumed for simplicity reasons in [1,3]
that quadratic contributions of anisotropy could be discarded, namely contributions like
H(dir)
il H(dir)

lj , H(dir)
il H(pol)

lj , . . . and so on. In this part, we verify this assumption. The four
corresponding quadratic non-linear transfers were explicitly computed and are gathered
in Appendix 2 because the expressions are rather lengthy: the isotropic one QNL(iso), the
directional and polarisation ones QNL(dir)

ij and QNL(pol)
ij , and the return-to-isotropy one

QNL(RTI)
ij , which should be respectively added to SNL(iso), SNL(dir)ij , SNL(pol)ij , and S(RTI)

ij , the
latter being defined in Appendix 1. The isotropic termQNL(iso) is conservative, and one has∫ ∞

0

[
2
(
QNL(iso) δij

3
+ QNL(dir)

ij + QNL(pol)
ij

)
− QNL(RTI)

ij

]
dk = 0. (30)

In fact, we derived analytically QNL(RTI)
ij only to check the latter property, which is a good

way to identify calculations errors. The impact of quadratic anisotropic contributions on



Figure 2. Quadratic anisotropic contributions in the non-linear transfers at St= 50, with σ = 2. Grey
curves represent simulations without the quadratic anisotropic contributions. (a) Budget terms along
with the integral and Kolmogorov wavenumbers kL and kη . (b) Global anisotropy indicator bij .

the non-linear transfers is revealed in Figure 2(a). One can note that the global shape of
the transfers is preserved and that there is a rather small change in intensity, mainly at
large scales which is expected since this is where anisotropy is dominant. The isotropic
and polarisation parts of the transverse component ()33 are more affected by the quadratic
contributions than the directional part.

In a recent work by Soulard and Gréa [39], a zero-mode analysis was performed on
a distinct anisotropic EDQNM model restricted to axisymmetric configurations. It was
notably found that zero modes of higher-order harmonics, which could be compared to
the quadratic anisotropic contributions here, for example, become negligible for increasing
k. This is fully consistent with what is obtained in Figure 2(a), namely that the quadratic
anisotropic contributions are completely negligible at small scales.

Regarding the global anisotropy indicator bij in Figure 2(b): the asymptotic values
are almost the same with and without the quadratic anisotropic contributions. One can
observe a slight increase of the streamwise anisotropy and decrease of the transverse one.
The kinetic energy exponential growth rate is notmodified by the presence of the quadratic
anisotropic contributions.

In conclusion, the quite heavy analytical calculations which led to the quadratic
anisotropic contributions in the non-linear transfers do not provide significant changes
and lengthen the numerical simulations. This fully justifies that they were neglected so far.
This analysis also indicates that in order to improve the modelling of anisotropy, it is not
efficient to refine the non-linear transfers, which remains a noticeable feature: one should
rather improve the production terms, which is the topic of the next part.

3. Modelling with the fourth-order expansion of E and Z

In this section, we aim at improving the anisotropic EDQNMmodelling originally devel-
oped in MCS by considering the fourth-order terms in the expansions for E and Z in
Equations (9) and (10), respectively. The objective is rather simple, namely to show that
taking into account more spherical harmonics improves the results of the model for shear



flows, andmore precisely decreases the value of the kinetic energy exponential growth rate
γ . To this end, the theoretical developments necessary to the fourth-order expansion are
exposed, and then the new spherically averaged equations are derived.

3.1. The operators of the fourth-order expansion

The first step is to determine the two fourth-order operators Pijpq and Nijpq which, when
contracted with E and Z respectively, extract only the fourth-order tensors U(dir)4

ijpq and

U(pol)4
ijpq of Equations (9) and (10), and erase the H(dir)

ij and H(pol)
ij contributions. This is

similar to what was done for the second-order expansion in [12], where the operators are,
according to Equations (11) and (12)

2EH(dir)
ij =

∫
Sk
E
(

δij

3
− αiαj

)
d2k, 2EH(pol)

ij =
∫
Sk

�(ZNiNj) d2k. (31)

The operator Pijpq is given in the recent study of Rubinstein et al. [23]. On the other
hand, Nijpq was not and is more complex to handle since it involves both the normalised
wavevector α = k/k and the helical mode N . After some algebra, one gets

Pijpq = αiαjαpαq − 1
7
(δijαpαq + 5perm.) + 1

35
(δijδpq + δipδjq + δiqδjp), (32)

Nijpq = (NiNjαpαq + NpNqαiαj + 4perm.) − 1
7
(δijNpNq + 5perm.), (33)

where ‘perm.’ refers to the other permutations of indices i, j, p, and q not written explicitly
for the sake of brevity. Thanks to these two operators, one defines the fourth-order spectral
anisotropy descriptors H(dir)

ijpq and H(pol)
ijpq , similarly to H(dir)

ij and H(pol)
ij in Equation (31), as

2E(k, t)H(dir)
ijpq (k, t) =

∫
Sk
E(k, t) Pijpq(k) d2k = 24

945
E(k, t)U(dir)4

ijpq (k, t), (34)

2E(k, t)H(pol)
ijpq (k, t) =

∫
Sk

�(Z(k, t)Nijpq(k)) d2k = 4
21

E(k, t)U(pol)4
ijpq (k, t), (35)

so that the fourth-order expansion of E and Z reads

E(k, t) = E0
(
1 − 15H(dir)

ij (k, t)αiαj + 945
12

H(dir)
ijpq (k, t)αiαjαpαq

)
, (36)

Z(k, t) = 1
2
E0
(
5H(pol)

ij (k, t) + 21
2
H(pol)
ijpq (k, t)αpαq

)
N∗
i N

∗
j . (37)

At this point, some words need to be said about the properties of the new fourth-order
tensors and related assumptions.

One can remark that at the fourth order, the polarisation part H(pol)
ijpq is contracted with

both normalised wavevectors αpαq and helical modes N∗
i N

∗
j , unlike the directional part



H(dir)
ijpq which is only contracted with αiαjαpαq. Hence, H

(dir)
ijpq is fully symmetric in its

indices, as reported in [23]. The latter property of full symmetry is thus a priori not veri-
fied byH(pol)

ijpq , but we nonetheless made this assumption. Otherwise, multiple independent
variables related to the fourth-order polarisation appear in the calculations which cannot
be dealt with in this framework. In addition, we assumed thatH(pol)

ijpq is trace-free, meaning

that any contraction of two indices yields zero. ForH(dir)
ijpq , this is verified according to [23],

but for H(pol)
ijpq this is a supplementary assumption. These two assumptions for H(pol)

ijpq were
used to obtain Equation (35) and thus Equation (37).

Consequently, there is room for improvement for the modelling of the fourth-order
expansion ofZ. Nevertheless, the present assumptions forH(pol)

ijpq allow to close the different
equations, and the numerical results presented in Section 3.5 show that these hypotheses
are acceptable. It is not clear what different rules could be used for H(pol)

ijpq and this is an
open question: one could think of a restriction with distinct i ↔ j and p ↔ q symmetries;
the contractions i=p, i=q, j=p, j=q could also be discussed.

With the fourth-order expansion, themodelled expression (15) of the spectral Reynolds
tensor R̂ij now reads

R̂ij = E0Pij
(
1 − 15H(dir)

pq αpαq + 945
12

H(dir)
rspq αrαsαpαq

)
︸ ︷︷ ︸

R̂e2ij +R̂e4ij

+ 1
2
E0
(
5H(pol)

pq + 21
2
H(pol)
pqrs αrαs

)
(2PipPjq + Pijαpαq)︸ ︷︷ ︸

R̂z2ij +R̂z4ij

. (38)

It is worth noting that the spherical average of R̂ij remains unchanged whether the fourth-
order contributions are considered or not, i.e. Equation (13) is still true. The final step
of the fourth-order modelling is to determine analytically (i) the linear and non-linear
transfers associated with EH(dir)

ijpq and EH(pol)
ijpq , and (ii) the retro-action of the fourth-order

contributions on the equations of E, EH(dir)
ij , and EH(pol)

ij . For the sake of readability, no
intermediate steps are given here since the expressions are very lengthy, but they can be
found in [40].

3.2. Fourth-order productions terms

In this part, we aim at determining the explicit expressions of the production terms, linear
with the mean-velocity gradient matrix Aij, linked to the fourth-order contributions in
the expansions (36) and (37) of E and Z, respectively. They are of three kinds: the fourth-
order contributions in the equations of EH(dir)

ij and EH(pol)
ij , in the equations of EH(dir)

ijpq and

EH(pol)
ijpq , and the second-order contributions in the equations of EH(dir)

ijpq and EH(pol)
ijpq . From

the properties of H(dir)
ijpq and H(pol)

ijpq , it follows that there are no fourth-order contributions
in the equation for E.



First, the contributions of the fourth-order expansion in the equations of EH(dir)
ij and

EH(pol)
ij are, after some algebra,

SL(dir4)ij (k, t) = −3A+
lnEH

(dir)
ijln − A+

ln

∂(kEH(dir)
ijln )

∂k
+ 1

6
A+
lnEH

(pol)
ijln , (39)

SL(pol4)ij (k, t) = −A+
lnEH

(dir)
ijln + 1

2
A+
lnEH

(pol)
ijln + 1

6
A+
ln

∂(kEH(pol)
ijln )

∂k
, (40)

where the superscripts (dir4) and (pol4) refer to the contributions of the fourth-order
expansion. Consequently and for the sake of clarity, the linear transfers of Equations (19)
and (20) are renamed SL(dir2)ij and SL(pol2)ij , so that the total linear transfers for EH(dir)

ij and

EH(pol)
ij are SL(dir)ij = SL(dir2)ij + SL(dir4)ij and similarly for SL(pol)ij .

Now, we define the linear directional and polarisation production terms SL(dir)ijpq and

SL(pol)ijpq of EH(dir)
ijpq and EH(pol)

ijpq , which can also be divided into two terms, resulting respec-
tively from the second- and fourth-order contributions

SL(dir)ijpq = 1
4

∫
Sk

(
Alnkl

∂R̂mm

∂kn
− 2MmnR̂nm

)
Pijpq d2k, (41)

SL(pol)ijpq = 1
4

∫
Sk

�
[(

Alnkl
∂R̂rs
∂kn

− MrnR̂ns − MsnR̂nr

)
N∗
r N

∗
s Nijpq

]
d2k. (42)

First, we determine the impact of the second-order contributions EH(dir)
ij and EH(pol)

ij on

the linear terms of EH(dir)
ijpq and EH(pol)

ijpq . For this purpose, it is convenient to introduce two

symmetric and trace-free operators H(2,e)
ijpq [EH()] and H(2,z)

ijpq [EH
()], which refer to terms

involving respectively R̂e2ij and R̂z2ij of Equation (15), namely

H(2,e)
ijpq [EH()] = E

[
8
5
A+
lnH

()

ln(δijδpq + δipδjq + δiqδjp) − 4[δij(A+
lpH

()

lq + A+
lqH

()

lp)

+ δpq(A+
li H

()

lj + A+
lj H

()

li ) + A+
lp(H

()

lj δiq + H()

li δjq) + A+
lq(H

()

lj δip + H()

li δjp)

+ H()

lp(A
+
jl δiq + A+

il δjq) + H()

lq(A
+
jl δip + A+

il δjp)]

+14(A+
ij H

()
pq + A+

pqH
()
ij + A+

ipH
()
jq + A+

iqH
()
jp + A+

jpH
()
iq + A+

jqH
()
ip)

]
, (43)

H(2,z)
ijpq [EH

()] = E[4A+
lnH

()

ln(δijδpq + δipδjq + δiqδjp) − 10[δij(A+
lpH

()

lq + A+
lqH

()

lp)

+ δpq(A+
li H

()

lj + A+
lj H

()

li ) + A+
lp(H

()

lj δiq + H()

li δjq) + A+
lq(H

()

lj δip + H()

li δjp)

+ H()

lp(A
+
jl δiq + A+

il δjq) + H()

lq(A
+
jl δip + A+

il δjp)]

+ 35(A+
ij H

()
pq + A+

pqH
()
ij + A+

ipH
()
jq + A+

iqH
()
jp + A+

jpH
()
iq + A+

jqH
()
ip)]. (44)



After some algebra, one eventually obtains

SL(dir2)ijpq = 1
441

(
−1
6
H(2,e)

ijpq [EH
(pol)] + 4H(2,e)

ijpq [EH(dir)] − H(2,e)
ijpq [∂k(kEH(dir))]

)
, (45)

SL(pol2)ijpq = 1
441

(6H(2,z)
ijpq [EH

(dir)] − 4H(2,z)
ijpq [EH

(pol)] + H(2,z)
ijpq [∂k(kEH

(pol))]). (46)

Consistently with the previous calculations, the superscripts (dir2) and (pol2) refer to the
contributions of the second-order expansion. Finally, we proceed similarly to determine
the impact of the fourth-order contributions on the linear terms of EH(dir)

ijpq and EH(pol)
ijpq . It

is also convenient to define a final operator H(4)
ijpq[EH

()] which reflects the terms coming
from R̂e4ij and R̂z4ij of Equation (38):

H(4)
ijpq[EH

()] = E
[
A+
li H

()

jlpq + A+
lj H

()

ilpq + A+
lpH

()

ijlq + A+
lqH

()

ijlp

−2
7
A+
ln(δijH

()

lnpq + δpqH
()

lnij + δipH
()

lnjq + δiqH
()

lnjp + δjpH
()

lniq + δjqH
()

lnip)

]
.

(47)

After intricate algebra involving the spherical integration of terms containing 10 nor-
malised wavevectors α, one finally gets

SL(dir4)ijpq = 1
11

(
2H(4)

ijpq[∂k(kEH
(dir))] − H(4)

ijpq[EH
(dir)] + 3

5
H(4)

ijpq[EH
(pol)]

)
+ E(A−

il H
(dir)
jpql + A−

jl H
(dir)
ipql + A−

plH
(dir)
ijlq + A−

qlH
(dir)
ijlp ), (48)

SL(pol4)ijpq = 1
11

(
4
5
H(4)

ijpq[∂k(kEH
(pol))] − 2

5
H(4)

ijpq[EH
(pol)] + 54H(4)

ijpq[EH
(dir)]

)

+ 3
5
E(A−

il H
(pol)
jpql + A−

jl H
(pol)
ipql + A−

plH
(pol)
ijlq + A−

qlH
(pol)
ijlp ). (49)

The total fourth-order directional and polarisation linear production terms are conse-
quently SL(dir)ijpq = SL(dir2)ijpq + SL(dir4)ijpq , and similarly for SL(pol)ijpq .

3.3. Fourth-order non-linear transfer terms

The fourth-order non-linear directional and polarisation transfers SNL(dir)ijpq and SNL(pol)ijpq are
defined as

SNL(dir)ijpq (k, t) = 1
2

∫
Sk
TE (k, t)Pijpq(k) d2k, (50)

SNL(pol)ijpq (k, t) = 1
2

∫
Sk

�(TZ(k, t)Nijpq(k)) d2k. (51)

Discarding the quadratic contributions of anisotropy as for the second-order expansions,
one obtains the important fact that SNL(dir)ijpq and SNL(pol)ijpq only depend on the fourth-order



contributions. In addition, since H(dir)
ijpq and H(pol)

ijpq are symmetric and trace-free, it follows

that fourth-order contributions vanish in SNL(dir)ij and SNL(pol)ij . The calculations yielding to

the final expressions of SNL(dir)ijpq and SNL(pol)ijpq are similar to the ones for SNL(dir)ij and SNL(pol)ij ,
but somehow lengthier:

SNL(dir)ijpq = 2
∫

�k

θkpqπ
2k2p2q(xy + z3)E ′′

0 [E ′
0(H

(dir)′
ijpq (35z4 − 30z2 + 3)

+ H(dir)′′
ijpq (35y4 − 30y2 + 3)) − E0(8H(dir)

ijpq + H(dir)′′
ijpq (35y4 − 30y2 + 3))] dp dq

+ 2
3

∫
�k

θkpqπ
2k2p2qE ′′

0 [(xy + z3)(1 − y2)(7y2 − 1)(E ′
0 − E0)H(pol)′′

ijpq

+ z(1 − z2)2(1 − 7z2)E ′
0H

(pol)′
ijpq ] dp dq, (52)

SNL(pol)ijpq = 4
∫

�k

θkpqπ
2k2p2qE ′′

0 [(xy + z3)(E ′
0H

(pol)′
ijpq (1 − 6z2 + 7z4) − 4E0H(pol)

ijpq )

+ z(5 − 7z2)(y2 − z2)E ′
0H

(pol)′
ijpq + (E ′

0 − E0)H(pol)′′
ijpq z(z2 − 1)(1 − 6y2 + 7y4)

+ xy(5 − 7y2)(1 − z2)E0H(pol)′′
ijpq ] dp dq + 60

∫
�k

θkpqπ
2k2p2qE ′′

0 z(1 − z2)

× [(1 − 8y2 + 7y4)(E ′
0 − E0)H(dir)′′

ijpq + (1 − 8z2 + 7z4)E ′
0H

(dir)′
ijpq ] dp dq, (53)

where�k is the domain where k, p, and q are the lengths of the sides of the triangle formed
by the triad, and compact notations are used, E0 = E(k)/(4πk2), E ′

0 = E(p)/(4πp2), and
E ′′
0 = E(q)/(4πq2).

3.4. Final spherically averaged equations

As a consequence of the previous calculations, the evolution equations of the fourth-order
anisotropic descriptors EH(dir)

ijpq and EH(pol)
ijpq read(

∂

∂t
+ 2νk2

)
E(k)H(dir)

ijpq (k) = SL(dir2)ijpq (k) + SL(dir4)ijpq (k) + SNL(dir)ijpq (k), (54)

(
∂

∂t
+ 2νk2

)
E(k)H(pol)

ijpq (k) = SL(pol2)ijpq (k) + SL(pol4)ijpq (k) + SNL(pol)ijpq (k). (55)

Moreover, the original equations (19) and (20) of EH(dir)
ij and EH(pol)

ij derived in MCS are
modified accordingly into(

∂

∂t
+ 2νk2

)
E(k, t)H(dir)

ij (k) = SL(dir2)ij (k) + SL(dir4)ij (k) + SNL(dir)ij (k), (56)

(
∂

∂t
+ 2νk2

)
E(k)H(pol)

ij (k) = SL(pol2)ij (k) + SL(pol4)ij (k) + SNL(pol)ij (k). (57)



Figure 3. Effects of the fourth-order expansion on the growth of the kinetic energy K(t) and the global
anisotropy indicator bij . (a) K(t) for σ = 2 and σ = 4. (b) bij for σ = 2. In both figures, the grey curves
indicate a simulation without the fourth-order contributions for comparison.

At this point, it is crucial to understand that the retro-action of the fourth-order con-
tributions on the second-order ones is uniquely done through the linear production
terms SL(dir4)ij and SL(pol4)ij , and that the impact of the second-order contributions on the

fourth-order ones is uniquely done through the linear terms SL(dir2)ijpq and SL(pol2)ijpq .

These four equations – the two new for EH(dir)
ijpq and EH(pol)

ijpq and the two adapted for

EH(dir)
ij and EH(pol)

ij – represent the second important theoretical contribution of this work.
For future reference, we call this approach the advanced anisotropic EDQNMmodelling. In
the next section, some numerical results using the fourth-order expansions are presented.

3.5. Numerical results using the fourth-order expansion

In this part, some numerical results are proposed to illustrate the interest of considering
the fourth-order expansion of E and Z in spherical harmonics. The numerical set-up is the
same as in [3]: kmin = 10−10kL(t = 0) and kmax = 106kη, where kL and kη = (ε/ν3)1/4

are, respectively, the integral and Kolmogorov wavenumbers. For numerical integration of
the five Lin equations of the advanced anisotropic EDQNMmodelling, a logarithmic dis-
cretisation in wavenumbers is used, such that ki+1 = rki with r = 101/f , f =17 points per
decade, with a third-order implicit Runge–Kutta scheme for the viscous term. The initial
Reynolds number based on the Taylor scale is approximately Reλ(0) � 10, and an initial
isotropic fully developed kinetic energy spectrum, given by [41], is chosen.

Themain consequence of the fourth-order contributions is that the kinetic energy expo-
nential growth rate is decreased in Figure 3(a), from γ = 0.33 with the MCS model, to
γ = 0.28 with the present advanced anisotropic modelling. Even though the value of γ

remains rather large, the significant decrease by 15% with the fourth-order expansion of
E and Z perfectly proves that taking into account more spherical harmonics goes into the
good direction, i.e. diminishes γ towards smaller values, consistently with DNS.

The joint result is, in Figure 3(b), the decrease of b13 from 0.215 to 0.18, which is a
noteworthy feature as well. One can further remark that on the contrary, the fourth-order



Figure 4. Effects of the fourth-order expansion on the linear terms of EH(dir)
ij and EH(pol)

ij , for σ = 2,

at Reλ(St = 50) = 9×103. The terms SL(dir2)ij and SL(pol2)ij contain the second-order contributions, and

the terms SL(dir4)ij and SL(pol4)ij the fourth-order contributions. (a) SL(dir)11 , (b) SL(dir)13 , (c) SL(dir)33 , (d) SL(pol)11 ,

(e) SL(pol)13 , and (f ) SL(pol)33 . In each case, the grey curves indicate simulations without the fourth-order
contributions at Reλ(St = 43) = 9×103.

contributions increase |b11| and |b33|, which is expected. Indeed, taking into account more
harmonics reduces the loss of information due to the spherical integration by restoring
part of the anisotropic angular information. As a consequence, the strong anisotropy of
the shear flow between the streamwise and transverse directions is better captured.

To better understand the impact of the fourth-order contributions, we investigate the
production terms in Figure 4, with the directional and polarisation parts of the streamwise,
transverse and cross components in Saffman turbulence. In this figure, the black curves
represent simulations with the fourth-order contributions, at Reλ = 9×103. Whereas the
grey curves indicate simulations with only the second-order expansion, as in MCS. Since
the Reynolds number increases faster in the latter case, the results are presented at St=43
where Reλ � 9×103 as well.

One can remark that the effects are different for the directional and polarisation parts:
indeed, the fourth-order contributions tend to decrease the intensity of the directional lin-
ear terms for the streamwise ()11 and transverse ()33 components, while increasing it for
the ()13 component. The opposite happens for the linear polarisation terms. In particular,
the strongest difference is observed for the transverse directional transfer SL(dir)33 , which is
positive without the fourth-order contributions, and becomes mostly negative with them.

As a conclusion for the fourth-order contributions, the main consequence is a 15%
decrease of the kinetic energy exponential growth rate, namely from γ = 0.33 to γ = 0.28,
which is quite significant, without rendering the numerical simulations more costly. It



further justifies a posteriori the assumptions made to establish the fourth-order expansion
of E and Z.

4. Odd-order terms in the expansion of Z

In this section, we discuss the possibility of odd-order terms in the spherical harmonics
expansion of the polarisation anisotropy Z. Recall that because of the symmetry of R̂ij, the
kinetic energy density E has only even-order contributions [12,23]. There are two reasons
why we wish to further consider odd-order terms in the expansion of Z: (i) Odd-order
expansions could improve the modelling of the 2iZ
CH term in the evolution equation (8)
ofZ; (ii) Recent results show that themain difference between theMCSmodel (and thus the
truncated expansions of E and Z) with an exact treatment of linear terms lies in the polar-
isation anisotropy [15]. Unfortunately, these developments are not conclusive yet because
they cannot be sustained numerically. Nevertheless, they are presented here for informa-
tion purposes, and to underline that perhaps different methods than simple tensorial tools
are required to model higher-order anisotropy features.

4.1. Determination of the third-order expansion of Z

Up to the fourth order, the expansion of Z can be written as

Z(k) = E0
2

(
5H(pol)

ij (k) + iU(pol)3
ijk (k)αk + 21

2
H(pol)
ijpq (k)αpαq

)
N∗
i (k)N

∗
j (k), (58)

whereU(pol)3
ijk is a tensor which is assumed to verify, for simplicity reasons and consistency

with previous developments, full symmetry under any change of indices, and to be zero
when two indices are equal. Note that the expression of the third-order contribution differs
from the one in [1] because of the imaginary number i. The latter is crucial, otherwise the
third order of Z never contributes in the equations. Two features are needed to prove this
statement. First, one requires the following result when computing the polarisation part
R̂(pol)
ij = �[ZNiNj]:

NiNjN∗
pN

∗
q = [PipPjq + PiqPjp − PijPpq]

− 1
2
iαa[Pjqεipa + Pipεjqa + Piqεjpa + Pjpεiqa], (59)

where εijk is the Levi–Civita permutation tensor. The second one is that the spherical aver-
age of an odd number of normalised wavevectors αi is zero [41]. Consequently, without
the i, �[ZNiNj] has an odd number of αi so that it vanishes with the spherical average.
Therefore, the present expansion (58) of Z corrects the Equation (3.15) of [1].

Then, as for the second- and fourth-order terms, one needs an operator which gives
only the third-order contributionU(pol)3

ijk and erases the others. This operator readsNijk =
αkNiNj + αjNiNk + αiNjNk, and we further define H(pol)

ijk as

2E(k, t)H(pol)
ijk (k, t) =

∫
Sk


[Z(k, t)Nijk(k)] d2k = 2
7
E(k, t)U(pol)3

ijk (k, t). (60)



The third-order expansion of Z does not modify the spectral tensor φij given in Equation
(13), which is still expressed as a function of H(dir)

ij and H(pol)
ij only, and gives a new

contribution in the modelled spectral Reynolds tensor R̂ij:

R̂z3ij (k, t) = 7
2
E0(k, t)H(pol)

pql (k, t)αlαn(εipnPjq(k) + εjqnPip(k)). (61)

Note that using some properties of the helical modes [27], the third-order expansion 2Z =
7iH(pol)

pql αlN∗
pN∗

q can also be written 2Z = 7H(pol)
pql αlαrεprsN∗

qN∗
s . Now that the third-order

expansion of Z has been properly defined, one needs to compute the linear production
terms and non-linear transfers associated to EH(pol)

ijk , along with its retro-action on the

evolution equations of EH(dir)
ij and EH(pol)

ij . For simplicity, we do not consider in this work
the linear coupling between the third and fourth orders.

Remark: It is worth noting that the third-order expansion of polarisation can be related
to the stropholysis tensor [42] defined as

Qijk(t) = εipq

∫
αpαkR̂jq(k, t) d3k

= −
∫

εijpαpαkE(k, t) d3k +
∫

αk
(Z(k, t)Ni(k)Nj(k)) d3k. (62)

The expression of Qijk as a function of the second-order anisotropic tensors can be found
in [1]. Interestingly, the symmetric stropholysisQ∗

ijk = (Qijk + Qikj + 4 perm.)/6 does not
contain directional anisotropy (because εijp = −εjip) and depends only on polarisation.
More specifically, only odd-order terms of the Z expansion can contribute in Q∗

ijk, which
further justifies the interest of odd-order contributions.

4.2. Third-order productions terms

In this part, and following the procedure detailed for the fourth-order contributions, we
aim at determining the explicit expressions of the production terms linked to the third-
order contributions in the expansion (58) of Z. As before, there are three different kinds
of terms: the third-order contributions in the equations of EH(dir)

ij and EH(pol)
ij and in the

equation of EH(pol)
ijk , and finally the second-order contributions in the equations of EH(pol)

ijk .
There are no third-order contributions in the equation for E, and for simplicity reasons,
we further discard the third-order contributions in the evolution equations of EH(dir)

ijpq and

EH(pol)
ijpq , and the fourth-order contributions in the equation of EH(pol)

ijk .

First, the retro-action of the third-order expansion in the equations of EH(dir)
ij and

EH(pol)
ij reads

SL(dir3)ij (k, t) = 1
6
A+
lnE(εilpH

(pol)
jnp + εjlpH

(pol)
inp ), (63)



SL(pol3)ij (k, t) = 1
3
A−
lnE(εlnpH

(pol)
ijp − εilpH

(pol)
jnp − εjlpH

(pol)
inp )

− 1
6
A+
ln

(
∂

∂k
[kE(εilpH

(pol)
jnp + εjlpH

(pol)
inp )] + E(εilpH

(pol)
jnp + εjlpH

(pol)
inp )

)
.

(64)

Note that unlike SL(dir4)ij and SL(pol4)ij , SL(pol3)ij depends on the antisymmetric part A−
ln of

the mean-velocity gradient matrix. Now, we define the linear polarisation term SL(pol)ijk of

EH(pol)
ijk as

SL(pol)ijk = 1
4

∫
Sk



[(

Alnkl
∂R̂rs
∂kn

− MrnR̂ns − MsnR̂nr

)
N∗
r N

∗
s Nijk

]
d2k. (65)

This production term is divided into two contributions resulting from the second- and
third-order expansions. First, we determine the impact of the second-order contributions
EH(dir)

ij and EH(pol)
ij on the linear term of EH(pol)

ijk . For this purpose, we introduce two trace-
free and symmetric operators, namely

H2,+
ijk [EH()] = 5E[A+

il (εjlnH
()

nk + εklnH
()
nj) + A+

jl (εilnH
()

nk + εklnH
()
ni)

+ A+
kl(εilnH

()
nj + εjlnH

()
ni)] − 2EA+

lnH
()
npE[δijεklp + δikεjlp + δjkεilp], (66)

H2,−
ijk [EH()] = 5E[A−

il (εjlnH
()

nk + εklnH
()
nj) + A−

jl (εilnH
()

nk + εklnH
()
ni)

+ A−
kl(εilnH

()
nj + εjlnH

()
ni) − A−

ln(εilnH
()

jk + εjlnH
()

ik + εklnH
()
ij )]

+ 2EA−
lnH

()
npE[δijεklp + δikεjlp + δjkεilp]. (67)

After some algebra, one gets

SL(pol2)ijk = −1
7
H(2,+)

ijk [EH(dir)] + 1
21

[H(2,−)

ijk [EH(pol)] − H(2,+)

ijk [EH(pol)]]

+ 1
42

H(2,+)

ijk [∂k(kEH(pol))]. (68)

Now, we proceed similarly to determine the linear term of EH(pol)
ijk as a function of the

third-order contributions. Eventually, one gets

SL(pol3)ijk = 1
3
[A−

il H
(pol)
jlk + A−

jl H
(pol)
ilk + A−

klH
(pol)
ijl ], (69)

where notably the symmetric part of themean-velocity gradientmatrix does not intervene.
Finally, the total third-order polarisation transfer is SL(pol)ijk = SL(pol2)ijk + SL(pol3)ijk .



4.3. Third-order non-linear transfer

The third-order polarisation non-linear transfer is defined as

SNL(pol)ijk (k, t) = 1
2

∫
Sk


(TZ(k, t)Nijk(k)) d2k. (70)

For the sake of simplicity, quadratic anisotropic contributions are still discarded, as for
the second and fourth orders: therefore, only the third-order terms contribute in SNL(pol)ijk .

Furthermore, becauseH(pol)
ijk is symmetric and trace-free, it follows that third-order expan-

sions vanish in SNL(dir)ij and SNL(pol)ij . Then, injecting the third-order expansion into the
expression (17) of TZ gives the spherically averaged non-linear polarisation transfer

SNL(pol)ijk = 4π2
∫

�k

θkpqk2p2qE ′′
0 [−4(xy + z3)E0H(pol)

ijk

+ H(pol)′′
ijk (1 − z2)(2z(1 − 2y2)(E ′

0 − E0) + xy(1 − 3y2)E0)

+ H(pol)′
ijk E ′

0(2(xy + z3)(2z2 − 1) − z(3z2 − 1)(y2 − z2))] dp dq. (71)

4.4. Final spherically averaged equations

The evolution equation of the third-order anisotropic descriptor EH(pol)
ijk reads(

∂

∂t
+ 2νk2

)
E(k)H(pol)

ijk (k) = SL(pol2)ijk (k) + SL(pol3)ijk (k) + SNL(pol)ijk (k). (72)

Moreover, the original equations (19) and (20) of EH(dir)
ij and EH(pol)

ij derived in MCS are
modified accordingly into(

∂

∂t
+ 2νk2

)
E(k, t)H(dir)

ij (k) = SL(dir2)ij (k) + SL(dir3)ij (k) + SNL(dir)ij (k), (73)

(
∂

∂t
+ 2νk2

)
E(k)H(pol)

ij (k) = SL(pol2)ij (k) + SL(pol3)ij (k) + SNL(pol)ij (k). (74)

Note that the retro-action of the third-order contributions on the second-order ones is
uniquely done through the linear transfers SL(dir3)ij and SL(pol3)ij , and that the impact of the
second-order contributions on the third-order ones is uniquely done through the linear
transfers SL(dir2)ijk and SL(pol2)ijk . This is completely similar to what was done for the fourth
order.

These developments for the third order of the polarisation anisotropy Z are not con-
clusive yet because the numerical code cannot handle satisfactorily the corresponding
equations (72), (73), and (74). This is very likely because of the assumptions we made to
define H(pol)

ijl , namely the full symmetry between indices. Similar rules were nevertheless

successfully used previously forH(dir)
ijpq andH(pol)

ijpq in Section 3. This suggests thatmore com-
plex features should be taken into account for odd-order terms with more sophisticated
tools.



5. Conclusions, perspectives, and summary

This work focuses on the spectral modelling of shear flows using an adapted eddy-damped
quasi-normal Markovian (EDQNM) closure for homogeneous anisotropic turbulence
developed byMons, Cambon, and Sagaut (MCS) [1] and further applied in [3]. The present
paper should be considered as the continuity of the two previous publications. The main
objectives were twofold: (i) to explain why in MCS the exponential growth rate of kinetic
energy γ is numerically independent of the large scales initial conditions, namely the
infrared slope σ of the kinetic energy spectrum E(k < kL) ∼ kσ . And (ii) to show that γ

can actually be reduced by improving the modelling of anisotropy. Two secondary aspects
were analysed as well: (iii) to quantify the effects of quadratic anisotropic contributions in
the non-linear transfers, an assumption which was not verified in [1,3]. And (iv) to address
themodelling of odd-order terms in the polarisation anisotropy expansion, a work for now
inconclusive but still ongoing.

For the first point, it was erroneously thought by the authors in [3] that such an indepen-
dence could be a consequence of the spherical average. It has been shown here analytically
in Section 2 using self-similarity arguments that γ is almost independent of σ because
the most amplified eigenvalue of the linear operator also depends on σ . This balances
the σ -dependence of the self-similar expression of E(k, t) at large scales. Interestingly, the
anisotropic EDQNMmodel recovers well for unstably stratified homogeneous turbulence
(USHT) the strong dependence of the kinetic energy exponential growth rate with the
infrared slope σ [4]: this is because themost amplified eigenvalue of the USHT linear oper-
ator does not depend on σ . This analysis consequently shows nicely that the mechanisms
at the origin of the exponential growth in shear and USHT are intrinsically different. This
is the first important finding of this work.

For the second point, we aimed at improving the MCS modelling for pure shear flows,
whose main issue is that the kinetic energy exponential growth rate γ is larger than com-
mon value reported in DNS and experiments [3]. Consequently, the objective here was to
show that γ could be reduced by better capturing the complex distribution of anisotropy.
This was done by computing analytically the fourth-order terms in the spherical harmon-
ics expansion of the kinetic energy density E and polarisation Z (in MCS the truncation
is at the second order). These developments led to the definitions of two new spherically
averaged anisotropic descriptors H(dir)

ijpq and H(pol)
ijpq whose evolution equations are similar

to the ones of the second-order descriptors H(dir)
ij and H(pol)

ij . For simplicity reasons, we

chose some symmetry rules for H(pol)
ijpq whose consequences are that the coupling between

the second-order and fourth-order equations is purely linear, i.e. through the production
terms.

Numerically, this advanced modelling for the anisotropy is satisfactory because it
decreases the exponential growth rate of kinetic energy from γ = 0.33 (MCS) to γ = 0.28,
without increasing the computational time. Conjointly, the cross-component of the global
anisotropy indicator goes down to |b13| = 0.18. Hence, we indeed showed that taking into
accountmore spherical harmonics in the expansion reduces the kinetic energy exponential
growth rate by better capturing the anisotropy distribution. This is the second theoretical
contribution of this work.

Regarding the third point, quadratic anisotropic contributions were explicitly presented
in Appendix 2 and were shown to be numerically negligible in Section 2.5. This notably



shows that to improve the description of anisotropy, it is more efficient to refine the linear
production terms than the non-linear ones: a useful trail for future works.

Finally, the fourth and last aspect of this work was to address the modelling of odd-
order terms in the expansion of polarisation anisotropy Z. All the analytical calculations
were done but are inconclusive in terms of numerical simulations. This is probably due to
assumptions we made regarding the symmetry properties of the third-order polarisation
tensor H(pol)

ijk . It was nevertheless shown that odd-order contributions of Z can be related
to the stropholysis [42] and as such deserve further investigations.

As perspectives, it could be of great theoretical interest to determine, or at least estimate,
at which order one should perform the expansion into spherical harmonics to properly
capture all the anisotropic features of a given homogeneous anisotropic turbulent flow.
This task could be rather complex, and even if it is out of the scope of the present work, the
authors would like to emphasis some aspects.

First, one would have to solve numerically the linear production terms of Equations (7)
and (8) and to project E and Z on an appropriate basis of deviatoric tensors such as H()

ij ,

H()

ijk, H
()
ijpq, . . .: in particular, this would require to determine explicitly the higher-order

projectors which may be extremely tedious given the complexity of the algebra involved
already at the fourth-order.

Second, it is very likely that this required number of spherical harmonics would depend
on both the mean-velocity gradient matrix Aij and the accumulated anisotropy St. Indeed,

Figure 5. Diagram presenting the methodology of the modelling and summarising the different levels
of assumptions, the various achievements, and the ongoing studies aswell. The ‘path’ toward thenumer-
ical simulations of the full E–Z equations with non-linear terms closed by EDQNM is broken since this
would be almost as costly as DNS in terms of numerical resources.



for the former, it appeared in [1,3] that the MCS model is accurate enough when Aij is
symmetric, such as in an axisymmetric expansion or contraction, or in a plane distortion,
so that the second-order expansion is sufficient. However, in shear flows, the fact thatAij is
not symmetric anymore seems to imply that more harmonics are needed. Furthermore, in
shear flows, theMCSmodelworks fine at small St (see the comparisonwith rapid distortion
theory in [1]), whichmeans that the number of spherical harmonics neededwould increase
with St. Consequently, these two aspects make the task of predicting the order at which
one should truncate the expansion of E and Z into spherical harmonics quite intricate. An
alternative solution could be to combine the anisotropic EDQNMmodelling for the non-
linear transfers with an exact treatment of the linear production terms, which is currently
the task of Zhu et al. in [15].

Finally, we propose in Figure 5 a synthetic view of the work accomplished so far, the var-
ious achievements, the methodology, the assumptions made, and the remaining objectives
as well. Notably, Figure 5 shows that the short-term objective of our work is to improve the
modelling of linear production terms with in particular the third-order expansion of Z.
This will provide the turbulence community a model which can handle accurately second-
order moments statistics in shear flows, with very few numerical resources and at large
Reynolds numbers.
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Appendices

Appendix 1. Linear and non-linear transfers for the second-order expansion

In this appendix, the explicit expressions of the spherically averaged transfer terms are given. The
non-linear ones are

SNL(iso) =
∫
Sk
TE d2k = 16π2

∫
�k

θkpqk2p2q(xy + z3)E ′′
0 (E ′

0 − E0) dp dq, (A1)

SNL(dir)ij = 1
2

∫
Sk
TEPij d2k − δij

3
SNL(iso) = 4π2

∫
�k

θkpqk2p2qE ′′
0 [z(1 − z2)2E ′

0H
(pol)′
ij

+ (y2 − 1)(xy + z3)(E ′
0 − E0)H(pol)′′

ij ] dp dq + 8π2
∫

�k

θkpqk2p2q(xy + z3)E ′′
0

× [(3y2 − 1)(E ′
0 − E0)H(dir)′′

ij + (3z2 − 1)E ′
0H

(dir)′
ij − 2E0H(dir)

ij ] dp dq, (A2)

SNL(pol)ij = 1
2

∫
Sk

�(TZNiNj) d2k = 4π2
∫

�k

θkpqk2p2qE ′′
0 [2z(z

2 − y2)E ′
0H

(pol)′
ij

+ (xy + z3)((1 + z2)E ′
0H

(pol)′
ij − 4E0H(pol)

ij ) + z(z2 − 1)(1 + y2)(E ′
0 − E0)H(pol)′′

ij

+ 2xy(z2 − 1)E0H(pol)′′
ij ] dp dq + 24π2

∫
�k

θkpqk2p2qz(z2 − 1)E ′′
0

× [(y2 − 1)(E ′
0 − E0)H(dir)′′

ij + (z2 − 1)E ′
0H

(dir)′
ij ] dp dq. (A3)

From the total non-linear transfer, a return to isotropy (RTI) term can be extracted

S(RTI)
ij (k, t) =

∫
�k

θkpq16π2k2p2q(x + yz)E ′′
0 [E ′

0(y(z
2 − y2)(6H(dir)′′

ij + H(pol)′′
ij )

− (xz + y)H(pol)′′
ij ) − y(z2 − x2)E0(6H(dir)′′

ij + H(pol)′′
ij )] dp dq. (A4)

All the non-linear transfers involve the characteristic time θkpq of the triple correlations, which
appears within the EDQNM approximation and is defined as

θkpq = 1 − e−μkpqt

μkpq
, μkpq = ν(k2 + p2 + q2) + μ(k, t) + μ(p, t) + μ(q, t), (A5)

where μ(k, t) is the (isotropic) eddy-damping factor [28]

μ(k, t) = A

√∫ k

0
x2E(x, t) dx, (A6)



andA= 0.36. The production terms are, withAij being themean-velocity gradientmatrix where ()+
and ()− denote the symmetric and antisymmetric parts,

SL(iso) = 1
2

∫
Sk

(
Alnkl

∂R̂ii
∂kn

− 2MinR̂ni

)
d2k

= −2A+
lm

(
∂

∂k
(kEH(dir)

lm ) + E(H(dir)
lm + H(pol)

lm )

)
, (A7)

SL(dir)ij = 1
4

∫
Sk

(
Alnkl

∂R̂mm

∂kn
− 2MmnR̂nm

)
Pij d2k − δij

3
SL(iso)

= 2
15

A+
ij E − 2

7
E(A+

lj H
(pol)
il + A+

li H
(pol)
jl − 2

3
A+
lnδijH

(pol)
ln ) − 1

15
A+
ij

∂(kE)

∂k

+ 2
7

(
A+
il

∂

∂k
(kEH(dir)

jl ) + A+
jl

∂

∂k
(kEH(dir)

il ) − 2
3
A+
lmδij

∂

∂k
(kEH(dir)

lm )

)

− 1
7
E
(
A+
jl H

(dir)
il + A+

il H
(dir)
jl − 2

3
A+
lmH

(dir)
lm δij

)
+ E(A−

jnH
(dir)
ni + A−

inH
(dir)
nj ), (A8)

SL(pol)ij = 1
4

∫
Sk

�
[(

Alnkl
∂R̂rs
∂kn

− MrnR̂ns − MsnR̂nr

)
N∗
r N

∗
s NiNj

]
d2k

= −2
5
A+
ij E − 12

7
E
(
A+
jl H

(dir)
il + A+

il H
(dir)
jl − 2

3
A+
lmH

(dir)
lm δij

)

− 2
7

(
A+
il

∂

∂k
(kEH(pol)

lj ) + A+
jl

∂

∂k
(kEH(pol)

li ) − 2
3
δijA+

lm
∂

∂k
(kEH(pol)

lm )

)

+ 1
7
E
(
A+
lj H

(pol)
il + A+

li H
(pol)
jl − 2

3
A+
lmH

(pol)
lm δij

)
− 1

3
E(A−

jl H
(pol)
li + A−

il H
(pol)
lj ). (A9)

Appendix 2. Explicit quadratic contributions of anisotropy for non-linear transfers

Here are the complete expressions of the quadratic anisotropic contributions in the non-linear
transfers for the anisotropic EDQNM modelling with truncation at the second order (MCS). The
following convenient notation is used

H(dir)′′
li H(dir)′

lj + H(dir)′′
lj H(dir)′

li − 2
3
H(dir)′′
ln H(dir)′

ln δij = {H(dir)′′ ,H(dir)′ }ij.

The quadratic anisotropic isotropic transfer term is conservative and reads

QNL(iso)(k, t) = 20
∫

�k

θkpqπ
2k2p2qE ′′

0 [2xy(1 − z2)H(pol)′′
ln (E ′

0H
(pol)′
ln − E0H(pol)

ln )

+ 6(xy + z3)(2H(dir)′′
ln ((3x2 − 1)E ′

0H
(dir)′
ln − (3y2 − 1)E0H(dir)

ln )

− H(pol)′′
ln ((1 − x2)E ′

0H
(dir)′
ln − (1 − y2)E0H(dir)

ln ))

+ z(z2 − 1)(H(pol)′′
ln ((1 + x2)E ′

0H
(pol)′
ln − (1 + y2)E0H(pol)

ln )

− 6H(dir)′′
ln ((1 − x2)E ′

0H
(pol)′
ln − (1 − y2)E0H(pol)

ln ))] dp dq. (A10)



The quadratic anisotropic directional transfer term is

QNL(dir)
ij (k, t) = 20

7

∫
�k

θkpqπ
2k2p2qE ′′

0 [12(xy + z3)[(1 + 3xyz)E ′
0{H(dir)′′ ,H(dir)′ }ij

+ (3y2 − 1)E0{H(dir)′′ ,H(dir)}ij] − 6(xy + z3)[(1 − 2z2 − xyz)E ′
0{H(pol)′′ ,H(dir)′ }ij

+ (1 − y2)E0{H(pol)′′ ,H(dir)}ij] + 6z(1 − z2)[(1 − 2y2 − xyz)E ′
0{H(dir)′′ ,H(pol)′ }ij

− (1 − y2)E0{H(dir)′′ ,H(pol)}ij] + z(z2 − 1)[(1 − 2x2 − 3xyz)E ′
0{H(pol)′′ ,H(pol)′ }ij

− (1 + y2)E0{H(pol)′′ ,H(pol)}ij] − y(1 − z2)[(x + 3yz)E ′
0{H(pol)′′ ,H(pol)′ }ij

+ 2xE0{H(pol)′′ ,H(pol)}ij]] dp dq. (A11)

The quadratic anisotropic polarisation transfer term is

QNL(pol)
ij (k, t) = 60

7

∫
�k

θkpqπ
2k2p2qE ′′

0 [−(xy + z3)[2(3xyz + 2z2 − 1)E ′
0{H(dir)′′ ,H(pol)′ }ij

+ (1 + xyz)E ′
0{H(pol)′′ ,H(pol)′ }ij] + 2(xy + z3)[2(1 − 3y2)E0{H(dir)′′ ,H(pol)}ij

+ (1 − y2)E0{H(pol)′′ ,H(pol)}ij] − 2z(1 − z2)[6(xyz + 2x2 − 1)E ′
0{H(dir)′′ ,H(dir)′ }ij

− (3xyz + 2y2 − 1)E ′
0{H(pol)′′ ,H(dir)′ }ij + 6(1 − y2)E0{H(dir)′′ ,H(dir)}ij

− (1 + y2)E0{H(pol)′′ ,H(dir)}ij] + (y2 − z2)[(xy + z)E ′
0{H(pol)′′ ,H(pol)′ }ij

+ 2(3xy + z)E ′
0{H(dir)′′ ,H(pol)′ }ij] − y(1 − z2)[4xE0{H(pol)′′ ,H(dir)}ij

− (x + yz)E ′
0{H(pol)′′ ,H(pol)′ }ij]] dp dq. (A12)

The quadratic anisotropic RTI term is

QNL(RTI)
ij (k, t) = 120

7

∫
�k

θkpqπ
2kp2qE ′′

0 [2y(x + yz)(xy + z)(zk − qx)E0

× (6{H(dir)′′ ,H(dir)}ij − 6{H(dir)′′ ,H(pol)}ij + {H(pol)′′ ,H(dir)}ij − {H(pol)′′ ,H(pol)}ij)
− kz(xy + z)E ′

0(12(y(x + yz) − z(1 − z2)){H(dir)′′ ,H(dir)′ }ij
− (6y(x + yz) + 2z(1 − z2)){H(dir)′′ ,H(pol)′ }ij
+ (2y(x + yz) + 6z(1 − z2)){H(pol)′′ ,H(dir)′ }ij
+ (z(1 − z2) − y(x + yz)){H(pol)′′ ,H(pol)′ }ij) + k(xy + z)E ′

0

× ((6y(y + xz) − 4(1 − z2)){H(dir)′′ ,H(pol)′ }ij
+ y(y + xz){H(pol)′′ ,H(pol)′ }ij)] dp dq. (A13)
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