V. Mons, C. Cambon, and P. Sagaut, A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically-averaged descriptors, J Fluid Mech, vol.788, pp.147-182, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276637

A. Briard, T. Gomez, and C. Cambon, Spectral modelling for passive scalar dynamics in homogeneous anisotropic turbulence, J Fluid Mech, vol.799, pp.159-199, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01429643

A. Briard, T. Gomez, and V. Mons, Decay and growth laws in homogeneous shear turbulence, J Turbul, vol.17, pp.699-726, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01429646

A. Briard, M. Iyer, and T. Gomez, Anisotropic spectral modelling for unstably stratified homogeneous turbulence, Phys Rev Fluids, vol.2, p.44604, 2017.

A. Burlot, B. J. Gréa, and F. S. Godeferd, Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence, J Fluid Mech, vol.765, pp.17-44, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298325

A. Briard and T. Gomez, Dynamics of helicity in homogeneous skew-isotropic turbulence, J Fluid Mech, vol.821, pp.539-581, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01528550

C. Cambon, V. Mons, and B. J. Gréa, Anisotropic triadic closures for shear-driven and buoyancydriven turbulent flows, Comp Fluids, vol.151, pp.73-84, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01724827

C. Cambon, L. Danaila, and F. S. Godeferd, Third-order statistics and the dynamics of strongly anisotropic turbulent flows, J Turbul, vol.14, pp.121-160, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00931420

B. J. Gréa, A. Burlot, and F. S. Godeferd, Dynamics and structure of unstably stratified homogeneous turbulence, J Turbul, vol.17, pp.651-663, 2016.

J. C. Isaza and L. R. Collins, On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow, J Fluid Mech, vol.637, pp.213-239, 2009.

P. Sukheswalla, T. Vaithianathan, and L. R. Collins, Simulation of homogeneous turbulent shear flows at higher Reynolds numbers: numerical challenges and a remedy, J Turbul, vol.14, pp.60-97, 2013.

C. Cambon and R. Rubinstein, Anisotropic developments for homogeneous shear flows, Phys Fluids, vol.18, p.85106, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00274852

C. Cambon and L. Jacquin, Spectral approach to non-isotropic turbulence subjected to rotation, J Fluid Mech, vol.202, pp.295-317, 1989.

A. Briard and T. Gomez, Prandtl number effects in decaying homogeneous isotropic turbulence with a mean scalar gradient, J Turbul, vol.18, pp.418-442, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498283

Y. Zhu, C. Cambon, F. S. Godeferd, J. F. Shao, G. Mompean et al., Rotating shear-driven turbulent flows: towards a spectral model with angle-dependent linear interactions, Proceedings of the 23rd Congrès Francais de Mécanique, 2017.

C. M. Casciola, P. Gualtieri, and R. Benzi, Scale-by-scale budget and similarity laws for shear turbulence, J Fluid Mech, vol.476, pp.105-114, 2003.

P. Gualtieri, C. M. Casciola, and G. Benzi, Scaling laws and intermittency in homogeneous shear flow, Phys Fluids, vol.14, pp.583-596, 2002.

L. Biferale and M. Vergassola, Isotropy vs anisotropy in small-scale turbulence, Phys Fluids, vol.13, pp.2139-2141, 2001.

J. Schumacher, K. R. Sreenivasan, and P. K. Yeung, Derivative moments in turbulent shear flows, Phys Fluids, vol.15, p.84, 2003.

A. Pumir, Turbulence in homogeneous shear flows, Phys Fluids, vol.8, pp.3112-3127, 1996.

S. Garg and Z. Warhaft, On the small scale structure of simple shear flow, Phys Fluids, vol.10, pp.662-673, 1998.

X. Shen and Z. Warhaft, The anisotropy of the small scale structure in high Reynolds number (R ? ? 1000) turbulent shear flow, Phys Fluids, vol.12, pp.2976-2989, 2000.

R. Rubinstein, S. Kurien, and C. Cambon, Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence, J Turbul, vol.16, pp.1058-1075, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298319

L. Biferale and I. Procaccia, Anisotropy in turbulent flows and in turbulent transport, Phys Rep, vol.414, pp.43-164, 2005.

T. T. Clark, S. Kurien, and R. Rubinstein, Generation of anisotropy in turbulent flows subjected to rapid distortion, Phys Rev E, vol.97, p.13112, 2018.

F. Waleffe, The nature of triad interactions in homogeneous turbulence, Phys Fluids, vol.4, pp.350-363, 1992.

P. Sagaut and C. Cambon, Homogeneous turbulence dynamics, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01706709

M. Lesieur, Dordrecht: Springer; 2008 (Fluid mechanics and its applications, Turbulence in fluids, vol.84

G. L. Eyink and D. J. Thomson, Free decay of turbulence and breakdown of self-similarity, Phys Fluids, vol.12, pp.477-479, 2000.

T. T. Clark and C. Zemach, A spectral model applied to homogeneous turbulence, Phys Fluids, vol.7, pp.1674-1694, 1995.

S. Tavoularis, Asymptotic laws for transversely homogeneous turbulent shear flows, Phys Fluids, vol.28, pp.999-1001, 1985.

W. K. George, The decay of homogeneous isotropic turbulence, Phys Fluids A, vol.7, pp.1492-1509, 1992.

S. Tavoularis and S. Corrsin, Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1, J Fluid Mech, vol.104, pp.311-347, 1981.

S. Tavoularis and U. Karnik, Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence, J Fluid Mech, vol.204, pp.457-478, 1989.

F. Souza, V. D. Nguyen, and S. Tavoularis, The structure of highly sheared turbulence, J Fluid Mech, vol.303, pp.155-167, 1995.

G. Brethouwer, The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation, J Fluid Mech, vol.542, pp.305-342, 2005.

A. Pumir and B. I. Shraiman, Persistent small scale anisotropy in homogeneous shear flows, Phys Rev Lett, vol.75, pp.3114-3117, 1995.

O. Soulard, J. Griffond, and B. J. Gréa, Large-scale analysis of self-similar unstably stratified homogeneous turbulence, Phys Fluids, vol.26, p.15110, 2014.

O. Soulard and B. J. Gréa, Influence of zero-modes on the inertial-range anisotropy of RayleighTaylor and unstably stratified homogeneous turbulence, Phys Rev Fluids, vol.2, p.74603, 2017.

A. Briard, Modelling of transport in homogeneous turbulence
URL : https://hal.archives-ouvertes.fr/tel-01621386

S. B. Pope, Turbulent flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00712179

S. C. Kassinos, W. C. Reynolds, and M. M. Rogers, One-point turbulence structure tensors, J Fluid Mech, vol.428, pp.213-248, 2001.