N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer, Journal of Fluid Mechanics, vol.192, pp.115-173, 1988.

D. Amsallem, J. Cortial, and C. Farhat, Towards Real-Time Computational-Fluid-Dynamics-Based Aeroelastic Computations Using a Database of Reduced-Order Information, AIAA Journal, vol.48, issue.9, pp.2029-2037, 2010.

L. Cordier and M. Bergmann, Two Typical Applications for POD: Coherent Structures Education and Reduced Order Modelling, von Karman Inst. for Fluid Dynamics, p.60, 2002.

G. Berkooz, P. Holmes, and J. L. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flow, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.539-575, 1993.

J. Östh, B. R. Noack, S. Krajnovi?, D. Barros, and J. Borée, On the Need for a Nonlinear Subscale Turbulence Term in POD Models as Exemplified for a High-Reynolds-Number Flow over an Ahmed Body, Journal of Fluid Mechanics, vol.747, pp.518-544, 2014.

R. ?tef?nescu, B. R. Noack, and A. Sandu, Model Reduction and Inverse Problems and Data Assimilation with Geophysical Applications. A Special Issue in Honor of I. Michael Navon's 75th Birthday, International Journal for Numerical Methods in Fluids, vol.82, issue.10, pp.625-630, 2016.

K. Veroy and A. T. Patera, Certified Real-Time Solution of the Parametrized Steady Incompressible Navier-Stokes Equations: Rigorous Reduced-Basis a Posteriori Error Bounds, International Journal for Numerical Methods in Fluids, vol.47, issue.8-9, pp.773-788, 2005.

D. Xiao, P. Yang, F. Fang, J. Xiang, C. C. Pain et al., NonIntrusive Reduced Order Modelling of Fluid-Structure Interactions, Computer Methods in Applied Mechanics and Engineering, vol.303, pp.35-54, 2016.

B. Protas, B. Noack, and J. Östh, Optimal Nonlinear Eddy Viscosity in Galerkin Models of Turbulent Flows, Journal of Fluid Mechanics, vol.766, pp.337-367, 2015.

S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza, POD-Galerkin Method for Finite Volume Approximation of Navier-Stokes and RANS Equations, Computer Methods in Applied Mechanics and Engineering, vol.311, pp.151-179, 2016.

P. Benner, S. Gugercin, and K. Willcox, A Survey of ProjectionBased Model Reduction Methods for Parametric Dynamical Systems, SIAM Review, vol.57, issue.4, pp.483-531, 2015.

A. I. Forrester, S. Andras, and A. J. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, 2008.

M. Fossati and W. G. Habashi, Multiparameter Analysis of Aero-Icing Problems Using Proper Orthogonal Decomposition and Multidimensional Interpolation, AIAA Journal, vol.51, issue.4, pp.946-960, 2013.

L. Margheri and P. Sagaut, A Hybrid Anchored-ANOVA-POD/ Kriging Method for Uncertainty Quantification in Unsteady HighFidelity CFD Simulations, Journal of Computational Physics, vol.324, pp.137-173, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461789

B. T. Thanh, M. Damodaran, and K. Willcox, Proper Orthogonal Decomposition Extensions for Parametric Applications in Transonic Aerodynamics, 15th AIAA Computational Fluid Dynamics Conference, 2003.

T. Braconnier, M. Ferrier, J. Jouhaud, M. Montagnac, and P. Sagaut, Towards an Adaptive POD/SVD Surrogate Model for Aeronautic Design, Computers and Fluids, vol.40, issue.1, pp.195-209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01298892

M. J. Mifsud, S. T. Shaw, and D. G. Macmanus, A High-Fidelity Low-Cost Aerodynamic Model Using Proper Orthogonal Decomposition, International Journal for Numerical Methods in Fluids, vol.63, issue.4, pp.468-494, 2010.

B. Peherstorfer and K. Willcox, Data-Driven Operator Inference for Nonintrusive Projection-Based Model Reduction, Computer Methods in Applied Mechanics and Engineering, vol.306, pp.196-215, 2016.

M. D. Graham and I. G. Kevrekidis, Alternative Approaches to the Karhunen-Loeve Decomposition for Model Reduction and Data Analysis, Computers & chemical engineering, vol.20, issue.5, pp.495-506, 1996.

D. J. Lucia, P. I. King, and P. S. Beran, Reduced Order Modeling of a Two-Dimensional Flow with Moving Shocks, Computers & Fluids, vol.32, issue.7, pp.917-938, 2003.

E. Iuliano, D. , and Q. , Proper Orthogonal Decomposition, Surrogate Modelling and Evolutionary Optimization in Aerodynamic Design, Computers & Fluids, vol.84, pp.327-350, 2013.

J. L. Eftang, A. T. Patera, and E. M. Rønquist, An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations, SIAM Journal on Scientific Computing, vol.32, issue.6, pp.3170-3200, 2010.

D. Amsallem, M. J. Zahr, and C. Farhat, Nonlinear Model Order Reduction Based on Local Reduced-Order Bases, International Journal for Numerical Methods in Engineering, vol.92, issue.10, pp.891-916, 2012.

K. Washabaugh, D. Amsallem, M. Zahr, and C. Farhat, Nonlinear Model Reduction for CFD Problems Using Local Reduced-Order Bases, 42nd AIAA Fluid Dynamics Conference and Exhibit, 2012.

T. Franz, R. Zimmermann, S. Görtz, and N. Karcher, InterpolationBased Reduced-Order Modelling for Steady Transonic Flows via Manifold Learning, International Journal of Computational Fluid Dynamics, vol.28, pp.106-121, 2014.

E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond et al., Cluster-Based Reduced-Order Modelling of a Mixing Layer, Journal of Fluid Mechanics, vol.754, pp.365-414, 2014.

R. P. Liem, C. A. Mader, and J. R. Martins, Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Aircraft Mission Analysis, Aerospace Science and Technology, vol.43, pp.126-151, 2015.

Z. Zhan, W. Habashi, and M. Fossati, Local Reduced Order Modeling and Iterative Sampling for Parametric Analyses of Aero-Icing Problems, AIAA Journal, vol.53, issue.8, pp.2174-2185, 2015.

B. R. Noack, From Snapshots to Modal Expansions-Bridging Low Residuals and Pure Frequencies, Journal of Fluid Mechanics, vol.802, pp.1-4, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850437

J. L. Loeppky, J. Sacks, and W. J. Welch, Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, vol.51, issue.4, pp.366-376, 2009.

A. Paul-dubois-taine, A. , and D. , An Adaptive and Efficient Greedy Procedure for the Optimal Training of Parametric Reduced-Order Models, International Journal for Numerical Methods in Engineering, vol.102, issue.5, pp.1262-1292, 2015.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, vol.21, pp.239-245, 1979.

Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, vol.41, issue.4, pp.637-676, 1999.

M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, 2nd rev, 2008.

M. Kirby and L. Sirovich, Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.1, pp.103-108, 1990.

C. A. Andrews, J. M. Davies, and G. R. Schwarz, Adaptive Data Compression, Proceedings of the IEEE, vol.55, issue.3, pp.267-277, 1967.

E. Lombardi, M. Bergmann, S. Camarri, and A. Iollo, Low-Order Models: Optimal Sampling and Linearized Control Strategies, Journal Européen des Systèmes Automatisés, vol.45, pp.575-593, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655888

J. L. Lumley, Atmospheric Turbulence and Wave Propagation, Nauka, pp.166-178, 1967.

L. Cordier, J. Delville, and J. P. Bonnet, Review of Some Fundamentals of Data Processing: Proper Orthogonal Decomposition, p.22, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180630

L. Sirovich, Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures, Quarterly of Applied Mathematics, vol.45, issue.3, pp.561-571, 1987.

D. Krige, A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand, 1951.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning, 2005.

J. D. Martin and T. W. Simpson, Use of Kriging Models to Approximate Deterministic Computer Models, AIAA Journal, vol.43, issue.4, pp.853-863, 2005.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.

M. Fossati, Evaluation of Aerodynamic Loads via ReducedOrder Methodology, AIAA Journal, vol.53, issue.8, pp.2389-2405, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-Learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Jameson, W. Schmidt, and E. Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA 14th Fluid and Plasma Dynamic Conference, 1259.

G. J. Mclachlan and K. E. Basford, Mixture Models. Inference and Applications to Clustering, Marcel Dekker, 1988.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), p.6, 2006.

T. Benamara, P. Breitkopf, I. Lepot, and C. Sainvitu, Adaptive Infill Sampling Criterion for Multi-Fidelity Optimization Based on Gappy-POD, Structural and Multidisciplinary Optimization, vol.54, pp.843-855, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01993098

P. Constantine, E. Dow, W. , and Q. , Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces, SIAM Journal on Scientific Computing, vol.36, issue.4, pp.1500-1524, 2014.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global Sensitivity Analysis. The Primer, 2008.

D. Bettebghor, N. Bartoli, S. Grihon, J. Morlier, and M. Samuelides, Surrogate Modeling Approximation Using a Mixture of Experts Based on EM Joint Estimation, Structural and Multidisciplinary Optimization, vol.43, pp.243-259, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01852300

B. Iooss, L. Boussouf, V. Feuillard, and A. Marrel, Numerical Studies of the Metamodel Fitting and Validation Processes, International Journal of Advances in Systems and Measurements, vol.3, pp.11-21, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00444666

R. Dupuis, J. Jouhaud, and P. Sagaut, Aerodynamic Data Predictions for Transonic Flows via a Machine-Learning-Based Surrogate Model, AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1905.

P. H. Cook, M. C. Firmin, and M. A. Mcdonald, Aerofoil RAE 2822: Pressure Distributions, and Boundary Layer and Wake Measurements, Royal Aircraft Establishment, 1977.

W. Haase and . Euroval, An European Initiative on Validation of CFD Codes: Results of the EC/BRITE-EURAM Project EUROVAL, Notes on Numerical Fluid Mechanics, pp.37-122, 1990.

L. Cambier, S. Heib, and S. Plot, The Onera elsA CFD Software: Input from Research and Feedback from Industry, vol.14, pp.159-174, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01293795

S. Yoon, J. , and A. , Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations, AIAA Journal, vol.26, issue.9, pp.1025-1026, 1988.

, Corrigendum 1, ISO International Standard 2533-1975, 1978.