A. C. Fernandez-pello, The solid phase, Combustion Fundamentals of Fire, pp.31-100, 1994.

V. Babrauskas, Ignition Handbook, Fire Science Publishers -Society of Fire Protection Engineers, 2003.

D. Drysdale, An Introduction to Fire Dynamics, 2011.

A. Tewarson and R. F. Pion, Flammability of plastics-I. Burning intensity, Combust. Flame, vol.26, pp.90059-90065, 1976.

T. J. Ohlemiller, Modeling of smoldering combustion propagation, Prog. Energy Combust. Sci, vol.11, pp.4-8, 1985.

Y. Sohn, S. W. Baek, and T. Kashiwagi, Transient modeling of thermal degradation in non-charring solids, Combust. Sci. Technol, vol.145, pp.83-108, 1999.

A. Tewarson, Combustion efficiency and its radiative component, Fire Saf, J, vol.39, pp.131-141, 2004.

S. I. Stoliarov, S. Crowley, R. E. Lyon, and G. T. Linteris, Prediction of the burning rates of non-charring polymers, Combust. Flame, vol.156, pp.1068-1083, 2009.

K. Nakabe, K. B. Mcgrattan, T. Kashiwagi, H. R. Baum, H. Yamashita et al., Ignition and transition to flame spread over a thermally thin cellulosic sheet in a microgravity environment, Combust. Flame, vol.4, issue.94, pp.90175-90184, 1994.

S. Olson, T. Kashiwagi, O. Fujita, M. Kikuchi, and K. Ito, Experimental observations of spot radiative ignition and subsequent three-dimensional flame spread over thin cellulose fuels, Combust. Flame, vol.125, pp.249-251, 2001.

W. Parker, Prediction of the heat release rate of wood, Fire Saf. Sci, vol.1, pp.207-216, 1986.

N. Boonmee and J. G. Quintiere, Glowing ignition of wood: the onset of surface combustion, Proc. Combust. Inst, vol.30, pp.2303-2310, 2005.

C. and D. Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Combust. Sci, vol.34, pp.47-90, 2008.

T. Fateh, T. Rogaume, and F. Richard, Multi-scale modeling of the thermal decomposition of fire retardant plywood, Fire Saf, J, vol.64, pp.36-47, 2014.

A. M. Grishin, A mathematical modelling of forest fires and new methods of fighting them, 1996.

J. L. Torero and A. Simeoni, Heat and mass transfer in fires: scaling laws, ignition of solid fuels and application to forest fires, Open Thermodyn. J, vol.4, pp.145-155, 2010.

W. E. Mell, S. L. Manzello, A. Maranghides, D. Butry, and R. G. Rehm, The wildland-urban interface fire problem -current approaches and research needs, Int. J. Wildland Fire, vol.19, pp.238-251, 2010.

A. P. Dimitrakopoulos and K. K. Papaioannou, Flammability assessment of mediterranean forest fuels, Fire Technol, vol.37, pp.143-152, 2001.

C. Schemel, A. Simeoni, H. Biteau, J. D. Rivera, and J. L. Torero, A calorimetric study of wildland fuels, Exp. Therm. Fluid Sci, vol.32, pp.1381-1389, 2008.

P. Bartoli, A. Simeoni, H. Biteau, J. L. Torero, and P. A. Santoni, Determination of the main parameters influencing forest fuel combustion dynamics, Fire Saf, J, vol.46, pp.27-33, 2011.

P. Mindykowski, A. Fuentes, J. L. Consalvi, and B. Porterie, Piloted ignition of wildland fuels, Fire Saf, J, vol.46, pp.34-40, 2011.

B. Porterie, D. Morvan, J. C. Loraud, and M. Larini, Firespread through fuel beds: modeling of wind-aided fires and induced hydrodynamics, Phys. Fluids, vol.12, pp.1762-1782

B. Porterie, J. L. Consalvi, A. Kaiss, and J. C. Loraud, Predicting wildland fire behavior and emissions using a fine-scale physical model, Numer. Heat Transf., Part A: Appl, vol.47, pp.571-591, 2005.

D. Morvan, Numerical study of the behaviour of a surface fire propagating through a firebreak built in a mediterranean shrub layer, Fire Saf, J, vol.71, pp.34-48, 2015.

D. Morvan and J. L. Dupuy, Modeling the propagation of a wildfire through a mediterranean shrub using a multiphase formulation, Combust. Flame, vol.138, pp.199-210, 2004.

S. Padhi, B. Shotorban, and S. Mahalingam, Computational investigation of flame characteristics of a non-propagating shrub fire, Fire Saf, J, vol.81, pp.64-73, 2016.

R. Shaw and U. Schumann, Large-eddy simulation of turbulent flow above and within a forest, Bound. Layer Meteorol, vol.61, pp.47-64, 1992.

E. G. Patton, R. H. Shaw, M. J. Judd, and M. R. Raupach, Large-eddy simulation of windbreak flow, Bound. Layer Meteorol, vol.87, pp.275-306, 1998.

R. H. Shaw and E. G. Patton, Canopy element influences on resolved-and sub-grid-scale energy within a large-eddy simulation, Agric. Forest Meteorol, vol.115, pp.5-17, 2003.

T. Watanabe, Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies, Bound. Layer Meteorol, vol.112, pp.307-341, 2004.

G. G. Katul, L. Mahrt, D. Poggi, and C. Sanz, One and two-equation models for canopy turbulence, Bound. Layer Meteorol, vol.113, pp.81-109, 2004.

H. Foudhil, Y. Brunet, and J. P. Caltagirone, A fine-scale K-Epsilon model for atmospheric flow over heterogeneous landscaped, Environ. Fluid Mech, vol.5, pp.247-265, 2005.

K. Gavrilov, D. Morvan, G. Accary, D. Lyubimov, and S. Meradji, Numerical simulation of coherent turbulent structures and passive scalar dispersion in canopy sublayer, Comput. Fluids, vol.78, pp.54-62, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01030794

M. Larini, F. Giroud, B. Porterie, and J. C. Loraud, A multiphase formulation for fire propagation in heterogeneous combustible media, Int. J. Heat Mass Transf, vol.41, pp.881-897, 1998.

D. Morvan, J. L. Dupuy, E. Rigolot, and J. C. Valette, FIRESTAR: a physically based model to study wildfire behaviour, Forest Ecol. Manag, vol.234, p.114, 2006.

W. Mell, A. Maranghides, R. Mcdermott, and S. L. Manzello, Numerical simulation and experiments of burning douglas fir trees, Combust. Flame, vol.156, pp.2023-2041, 2009.

J. L. Consalvi, F. Nmira, A. Fuentes, P. Mindykowski, and B. Porterie, Numerical study of piloted ignition of forest fuel layer, Proc. Combust. Inst, vol.33, pp.2641-2648, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01460094

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, 2007.

C. M. Hoffman, J. Canfield, R. R. Linn, W. Mell, C. H. Sieg et al., Evaluating crown fire rate of spread predictions from physics-based models, Fire Technol, vol.52, pp.221-237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01283080

R. R. Linn, J. Reisner, J. J. Colman, and J. Winterkamp, Studying wildfire behavior using FIRETEC, Int. J. Wildland Fire, vol.11, p.233, 2002.

W. Mell, WFDS preliminary user's guide, 2010.

M. E. Alexander and M. G. Cruz, Evaluating a model for predicting active crown fire rate of spread using wildfire observations, Can. J. For. Res, vol.36, pp.3015-3028, 2006.

. Iso-12136, Reaction to fire tests -measurement of material properties using a fire propagation apparatus. International Organization for Standardization, 2011.

M. E. Houssami, J. C. Thomas, A. Lamorlette, D. Morvan, M. Chaos et al., Experimental and numerical studies characterizing the burning dynamics of wildland fuels, Combust. Flame, vol.168, pp.113-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01345741

X. Silvani and F. Morandini, Fire spread experiments in the field: temperature and heat fluxes measurements, Fire Saf, J, vol.44, pp.279-285, 2009.

J. C. Thomas, A. Simeoni, M. Gallagher, and N. Skowronski, An experimental study evaluating the burning dynamics of pitch pine needle beds using the FPA, Fire Saf. Sci, vol.11, pp.1406-1419, 2014.

R. M. Nelson and C. W. Adkins, Flame characteristics of wind-driven surface fires, Can. J. For. Res, vol.6, pp.1293-1300, 1986.

W. M. Pitts, Wind effects on fires, Prog. Energy Combust. Sci, vol.17, pp.83-134, 1991.

K. L. Clark, N. Skowronski, and M. Gallagher, Fire management and carbon sequestration in pine barren forests, J. Sustain. For, vol.34, pp.125-146, 2015.

N. Ren, Y. Wang, S. Vilfayeau, and A. Trouvé, Large eddy simulation of turbulent vertical wall fires supplied with gaseous fuel through porous burners, Combust. Flame, vol.169, pp.194-208, 2016.

D. Morvan, S. Méradji, and G. Accary, Physical modelling of fire spread in grasslands, Fire Saf, J, vol.44, pp.50-61, 2009.

S. Patankar, Numerical heat transfer and fluid flow, Series in coputational methods in mechanics and thermal sciences, pp.1-197, 1980.

X. Zhou, S. Mahalingam, and D. Weise, Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed, Combust. Flame, vol.143, pp.183-198, 2005.

R. Clift, J. Grace, and M. E. Weber, Bubbles, drops and particles, 1978.

N. Cheng, Calculation of drag coefficient for arrays of emergent circular cylinders with pseudofluid model, J. Hydraul. Eng, vol.139, pp.602-611, 2013.

M. R. Raupach, Drag and drag partition on rough surfaces, Bound. Layer Meteorol, vol.60, pp.375-395, 1992.

E. Mueller, LES modeling of flow through vegetation with applications to wildland fires, 2012.

H. M. Nepf, J. A. Sullivan, and R. A. Zavitoski, A model for diffusion within an emergent plant canopy, Limnol. Oceanogr, vol.42, issue.8, pp.85-95, 1997.

A. Lamorlette and A. Collin, Analytical quantification of convective heat transfer inside vegetal structures, Int. J. Therm. Sci, vol.57, pp.78-84, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01297730

T. F. Irvine and J. P. Hartnett, Advances in heat transfer, 1978.

W. A. Khan, J. R. Culham, and M. M. Yovanovich, Convection heat transfer from tube banks in crossflow: analytical approach, Int. J. Heat Mass Transf, vol.49, pp.831-835, 2006.

T. J. Ohlemiller, Smoldering combustion, SFPE handbook of fire protection engineering, pp.201-210, 2002.

G. Rein, S. Cohen, and A. Simeoni, Carbon emissions from smouldering peat in shallow and strong fronts, Proc. Combust. Inst, vol.32, pp.2489-2496, 2009.

D. Evans and H. Emmons, Combustion of wood charcoal, Fire Res, vol.1, pp.57-66, 1977.

A. Mendes, A. Dollet, C. Ablitzer, C. Perrais, and G. Flamant, Numerical simulation of reactive transfers in spouted beds at high temperature: application to coal gasification, J. Anal. Appl. Pyrolysis, vol.82, pp.117-128, 2008.

D. Morvan, C. Hoffman, F. Rego, and W. Mell, Numerical simulation of the interaction between two fire fronts in grassland and shrubland, Fire Saf, J, vol.46, pp.469-479, 2011.

J. L. Dupuy, J. Maréchal, and D. Morvan, Fires from a cylindrical forest fuel burner: combustion dynamics and flame properties, Combust. Flame, vol.135, pp.65-76, 2003.

V. Tihay, A. Simeoni, P. Santoni, L. Rossi, J. Garo et al., Experimental study of laminar flames obtained by the homogenization of three forest fuels, Int. J. Therm. Sci, vol.48, pp.488-501, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420524

A. Simeoni, J. C. Thomas, P. Bartoli, P. Borowieck, P. Reszka et al., Flammability studies for wildland and wildland-urban interface fires applied to pine needles and solid polymers, Fire Saf, J, vol.54, pp.203-217, 2012.

Z. Acem, A. Lamorlette, A. Collin, and P. Boulet, Analytical determination and numerical computation of extinction coefficients for vegetation with given leaf distribution, Int. J. Therm. Sci, vol.48, pp.1501-1509, 2009.

F. A. Albini, A model for fire spread in wildland fuels by radiation, Combust. Sci. Technol, vol.42, pp.229-258, 1985.

D. Morvan and M. Larini, Modeling of one dimensional fire spread in pine needles with opposing air flow, Combust. Sci. Technol, vol.164, pp.37-64, 2001.

S. Vilfayeau, N. Ren, Y. Wang, and A. Trouvé, Numerical simulation of underventilated liquid-fueled compartment fires with flame extinction and thermally-driven fuel evaporation, Proc. Combust. Inst, vol.35, pp.2563-2571, 2015.

F. F. Kollman and W. A. Côté, Principles of wood science and technology, 1. Solid wood, Principles of wood science and technology, 1968.