S. Roller and C. Munz, A low Mach number scheme based on multi-scale asymptotics, Comput. Vis. Sci, vol.3, pp.85-91, 2000.

S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, 2001.

L. Chen, Y. Feng, C. Song, L. Chen, Y. He et al., Multi-scale modeling of proton exchange membrane fuel cell by coupling finite volume method and lattice Boltzmann method, Int. J. Heat Mass Transfer, vol.63, pp.268-283, 2013.

A. Mohamad and A. Kuzmin, A critical evaluation of force term in lattice Boltzmann method, natural convection problem, Int. J. Heat Mass Transfer, vol.53, issue.5, pp.990-996, 2010.

Y. Zhou, R. Zhang, I. Staroselsky, and H. Chen, Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm, Int. J. Heat Mass Transfer, vol.47, issue.22, pp.4869-4879, 2004.

X. Liu and P. Cheng, Lattice Boltzmann simulation of steady laminar film condensation on a vertical hydrophilic subcooled flat plate, Int. J. Heat Mass Transfer, vol.62, pp.507-514, 2013.

O. Filippova and D. Hänel, A novel lattice bgk approach for low Mach number combustion, J. Comput. Phys, vol.158, pp.139-160, 2000.

L. Hung and J. Yang, A coupled lattice Boltzmann model for thermal flows, IMA J. Appl. Math, vol.76, pp.774-789, 2011.

Q. Li, K. Luo, Y. He, and W. Tao, Couplling lattice Boltzmann model for simulation of thermal flows on standard lattices, Phys. Rev. E, vol.85, p.16710, 2012.

Y. Feng, P. Sagaut, and W. Tao, A three dimensional lattice model for thermal compressible flow on standard lattices, J. Comput. Phys, vol.303, pp.514-529, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276507

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev, vol.94, pp.511-525, 1954.

P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. Rev. E, vol.68, p.36706, 2003.

N. I. Prasianakis, S. S. Chikatamarla, I. V. Karlin, S. Ansumali, and K. Boulouchos, Entropic lattice Boltzmann method for simulation of thermal flows, Math. Comput. Simul, vol.72, pp.179-183, 2006.

J. Latt and B. Chopard, Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul, vol.72, issue.2-6, pp.165-168, 2006.

K. Mattila, P. Philippi, and L. Hegelejr, High-order regularization in latticeBoltzmann equations, Phys. Fluids, vol.29, issue.4, p.46103, 2017.

C. Coreixas, G. Wissocq, G. Puigt, J. Boussuge, and P. Sagaut, Recursive regularization step for high-order lattice Boltzmann methods, Phys. Rev. E, vol.96, p.33306, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596322

J. Jacob, O. Malaspinas, and P. Sagaut, A new hybrid recursive regularized Bhatnagar-Gross-Krook collision model for lattice-Boltzmann-method based large-eddy simulation, Phys. Fluids

P. Lallemand and L. S. Luo, Hybrid finite-difference thermal lattice Boltzmann equation, Int. J. Mod. Phys. B, vol.17, pp.41-47, 2003.

A. Mezrhab, M. Bouzidi, and P. Lallemand, Hybrid lattice-Boltzmann finitedifference simulation of convective flows, Comput. Fluids, vol.33, issue.4, pp.623-641, 2004.

J. Tölke, A thermal model based on the lattice Boltzmann method for low Mach number compressible flows, J. Comput. Theoret. Nanosci, vol.3, pp.1-9, 2006.

Q. Li and K. H. Luo, Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows, Nonlinear, Soft Matter Phys, vol.89, issue.5, pp.1-7, 2014.

X. Nie, X. Shan, and H. Chen, Lattice Boltzmann/Finite-difference Hybrid Simulation of Transonic Flow, AIAA Paper, vol.139, 2009.

Y. Qian, D. D'humires, and P. Lallemand, Lattice bgk models for Navier-Stokes equation, Europhys. Lett.), vol.17, pp.479-484, 1992.

S. Y. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech, vol.30, pp.329-364, 1998.

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 1970.

X. Y. He, S. Y. Chen, and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys, vol.146, pp.282-300, 1998.

Z. L. Guo, C. G. Zheng, B. C. Shi, and T. S. Zhao, Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E, vol.75, p.36704, 2007.

Y. Saad, Iterative Methods for Sparse linear Systems, 1996.

D. L. Sun, Y. P. Yang, J. L. Xu, and W. Q. Tao, Performance analysis of ideal algorithm combined with bi-cgstab method, Numer. Heat Transfer, vol.56, pp.411-431, 2010.

W. Q. Tao, Numerical Heat Transfer, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00750529

L. Kuo, W. Chou, and P. Chen, Effects of slip boundaries on thermal convection in 2d box using lattice Boltzmann method, Int. J. Heat Mass Transfer, vol.54, issue.7, pp.1340-1343, 2011.

S. Chen, H. Liu, and C. Zheng, Numerical study of turbulent double-diffusive natural convection in a square cavity by les-based lattice Boltzmann model, Int. J. Heat Mass Transfer, vol.55, issue.17, pp.4862-4870, 2012.

F. Hajabdollahi and K. N. Premnath, Central moments-based cascaded lattice Boltzmann method for thermal convective flows in three-dimensions, Int. J. Heat Mass Transfer, vol.120, pp.838-850, 2018.

O. Malaspinas, B. Chopard, and J. Latt, General regularized boundary condition for multi-speed lattice Boltzmann models, Comput. Fluids, vol.49, issue.1, pp.29-35, 2011.

L. Li, R. Mei, and J. F. Klausner, Lattice Boltzmann models for the convectiondiffusion equation: D2q5 vs d2q9, Int. J. Heat Mass Transfer, vol.108, pp.41-62, 2017.

X. W. Shan, X. F. Yuan, and H. D. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech, vol.550, pp.413-441, 2006.

S. P. Thampi, S. Ansumali, R. Adhikari, and S. Succi, Isotropic discrete Laplacian operators from lattice hydrodynamics, J. Comput. Phys, vol.234, pp.1-7, 2013.

C. Zhuo and P. Sagaut, Acoustic multipole sources for the regularized lattice Boltzmann method: comparison with multiple-relaxation-time models in the inviscid limit, Phys. Rev. E, vol.95, issue.6, p.63301, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01548424

E. Garnier, N. Adams, and P. Sagaut, Large Eddy Simulation for Compressible Flows, Scientific Computation, 2009.

J. Vierendeels, B. Merci, and E. Dick, Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences, Int. J. Numer. Methods Heat Fluid Flow, vol.13, pp.1057-1078, 2003.

G. Barakos, E. Mitsoulis, and D. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions, Int. J. Numer. Meth. Fluids, vol.18, pp.695-719, 1994.

S. Xin and P. L. Quéré, An extended Chebyshev pseudo-spectral benchmark for the 8: 1 differentially heated cavity, Int. J. Numer. Meth. Fluids, vol.40, issue.8, pp.981-998, 2002.

T. Gjesdal, C. E. Wasberg, and B. A. Reif, Spectral element benchmark simulations of natural convection in two-dimensional cavities, Int. J. Numer. Methods Fluids, vol.50, issue.11, pp.1297-1319, 2006.

M. A. Christon, P. M. Gresho, and S. B. Sutton, Computational predictability of timedependent natural convection flows in enclosures (including a benchmark solution), Int. J. Numer. Meth. Fluids, vol.40, issue.8, pp.953-980, 2002.

. Klein, A high-order discontinuous Galerkin solver for low Mach number flows, Int. J. Numer. Methods Fluids, pp.601-629, 2007.