S. L. Brunton and B. R. Noack, Closed-loop turbulence control: progress and challenges, Appl. Mech. Rev, vol.67, p.50801, 2015.

J. Lumley, Stochastic Tools in Turbulence, 1970.

S. Pope, Turbulent Flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00712179

P. Sagaut, Large-eddy Simulation for Incompressible Flows. An Introduction, 2005.

D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, 2006.

S. B. Daley, Atmospheric Data Analysis, 1991.

D. P. Foures, N. Dovetta, D. Sipp, and P. J. Schmid, A data-assimilation method for Reynolds-averaged NavierStokes-driven mean flow reconstruction, J. Fluid Mech, vol.759, pp.404-431, 2014.

V. Mons, J. C. Chassaing, T. Gomez, and P. Sagaut, Reconstruction of unsteady viscous flows using data assimilation schemes, J. Comput. Phys, vol.316, pp.255-280, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01333881

T. Suzuki and F. Yamamoto, Hierarchy of hybrid unsteady-flow simulations integrating time-resolved PTV with DNS and their data-assimilation capabilities, Fluid Dyn. Res, vol.47, p.51407, 2015.

M. Meldi and A. Poux, A reduced order Kalman Filter model for sequential Data Assimilation of turbulent flows, J. Comput. Phys, vol.347, pp.207-234, 2017.

T. Colonius and S. K. Lele, Sound generation in a mixing layer, J. Fluid Mech, vol.330, pp.375-409, 1997.

W. A. Mcmullan, S. Gao, and C. M. Coats, A comparative study of inflow conditions for two-and threedimensional spatially developing mixing layers using large eddy simulation, Int. J. Numer. Methods Fluids, vol.585, pp.589-610, 2007.

W. A. Mcmullan, S. Gao, and C. M. Coats, The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers, Int. J. Heat Fluid Flow, vol.30, pp.1054-1066, 2009.

M. Meldi, M. V. Salvetti, and P. Sagaut, Quantification of errors in large-eddy simulations of a spatially evolving mixing layer using polynomial chaos, Phys. Fluids, vol.24, p.35101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01298916

Y. Wang, M. Tanahashi, and T. Miyauchi, Coherent fine scale eddies in turbulence transition of spatiallydeveloping mixing layer, Int. J. Heat Fluid Flow, vol.28, pp.1280-1290, 2007.

J. Smagorinsky, General circulation experiments with the primitive equations, I: the basic experiment, Mon. Weather Rev, vol.91, issue.3, pp.99-165, 1963.

D. K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, pp.195-210, 1967.

M. Meldi, D. Lucor, and P. Sagaut, Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum?, Phys. Fluids, vol.23, p.125109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01298914

R. E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng, vol.82, pp.35-45, 1960.

J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 2002.

R. I. Issa, Solution of the implicitly discretized fluid flow equations by operator-splitting, J. Comput. Phys, vol.62, pp.40-65, 1986.

S. J. Julier and J. K. Uhlmann, A new extension of the Kalman filter to nonlinear systems, Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls, 1997.