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A New Gases Identifying Method With MOX Gas
Sensors Using Noise Spectroscopy

Sami Gomri, Thierry Contaret, and Jean-Luc Seguin

Abstract— Gas sensing techniques are often required to not
only be sensitive and portable but also to be able to identify
gases. In this paper, we describe and demonstrate a new gas
identification approach based on noise spectroscopy. By using the
model of the gas sensor noise developed in our previous work,
we calculate the exact theoretical expression of the first derivative
of the power spectral density of the gas sensor noise, and we
show that there is a correlation between this expression and the
nature of the detected gas. This theoretical result is argued by
some experimental results performed on a metal oxide gas sensor
exposed to various gases. The new principle holds prospects for
finding powerful method for the identification of gases.

Index Terms—Electronic nose, gas sensor, noise, spectral
analysis.

I. INTRODUCTION

VER the last decade, “electronic nosing” or “e-nosing”
Otechnologies have undergone important developments
from a technical and commercial point of view. The expression
“electronic nosing” refers to the capability of reproducing
human nose using sensor arrays and pattern recognition sys-
tems. Electronic nose is a sophisticated system used in the
identification of complex mixtures of chemicals. It consists of
a multi sensor array, an information-processing unit, software
with digital pattern-recognition algorithms, and reference-
library databases [1]-[5]. The sensor array is composed of dif-
ferent sensors chosen to respond to a wide range of chemical
classes and discriminate diverse mixtures of possible analytes.
The output of individual sensors are collectively assembled
and integrated to generate a distinct digital response pat-
tern. Identification and classification of an analyte mixture is
accomplished through recognition of this unique chemical sig-
nature (electronic fingerprint) of collective sensor responses.

Since a few years ago, fluctuation enhanced sensing (FES)
has become an active research area in the field of gas sen-
sors [6]. The FES principle uses the fluctuations of the gas
sensors’ response as an information source. This experimental
technique is based on noise spectroscopy: the measurement
and the analysis of the power spectral density (PSD) of
the fluctuations measured at the terminals of sensors in the
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presence of one or more gases. Measuring these fluctuations
caused by adsorption—desorption and diffusion noise provides
enhanced selectivity and sensitivity. In fact, the FES method
has been used in many works [6]-[15] to show that basing
on noise spectroscopy one gas sensor can be enough to
identify gases. It is based on the product f.S(f), where f is
the frequency and S(f) is the PSD of the gas sensor noise.
Indeed, from the plot of this product some gas identification
parameters have been extracted and proposed as a gas sig-
nature. For example, in [14], the average slope of the f.S(f)
product, fixed for different decades of frequency f, has been
proposed as one of the possible constitutive parameters for gas
recognition. In [15], the parameter used as a gas signature is
the characteristic frequency at which the product £.5(f) reaches
its maximum.

In this context, the aim of this paper is to propose a new
gases identification method based on noise spectroscopy. This
method is based on the first derivative (with respect to the
frequency) of the PSD of the gas sensor noise measured in the
presence of gases. We show that, instead of using the function
f-S(f), the first derivative (S"(f)), of the PSD of the gas sensor
noise can be used in order to identify gases. We show that
S’(f) has a minimum which depends on the nature of the
detected gas.

The structure of the paper is as follows; in section 2,
we present an overview on the feature selection step and its
importance in electronic nose. At the end of this paragraph
we introduce our method through which we propose a new
gas identifying feature. In section 3, the proposed method
is studied under two aspects: theoretical demonstration and
experimental validation.

II. OVERVIEW ON THE FEATURE SELECTION IN
ELECTRONIC NOSE (E-NOSE)

The electronic nose is an application of pattern recognition
system (PRS). The aim of a pattern recognition system is to
associate each pattern with one of a number of possible pattern
classes (or simply classes). Patterns are typically described in
terms of multidimensional data vectors, where each compo-
nent is called a feature. In the case of the electronic nose,
the patterns and the classes are, respectively, the responses of
the sensor array to odorants and the odorants being consid-
ered. As illustrated in Fig. 1, this process can be split into
four sequential stages: signal pre-processing, dimensionality
reduction, classification, and validation.

The pre-processing stage is often applied in order to select
a number of parameters called features, which are descriptive
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Fig. 1. Generic scheme of a pattern recognition system for electronic nose.
TABLE I
SOME STEADY-STATE FEATURES MODELS [17]-[21]
Model Description
Difference max _ ,.min
Relative difference ymax /xir;zin

tj

(xmax _ xmin)/xmin

Fractional difference ij ij ij

max/xmin

Log(x{ ij

Logarithm difference

Vertical lines are optional in tables. Statements that serve as captions for
the entire table do not need footnote letters.

“Gaussian units are the same as c¢g emu for magnetostatics; Mx = maxwell,
G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T = tesla, m =
meter, A = ampere, J = joule, kg = kilogram, H = henry.

of the sensor array response. Features are those measurements
which are extracted from a pattern to represent it in the features
space. In other words, pattern analysis enables us to use some
features to describe and represent it instead of using the pat-
tern itself. Also called characteristics, attributes or signatures,
the recognition efficiency and reliability are dependent on their
choice [16].

The first feature extraction method is to extract piece-
meal signal features from the original temporal response
curves of sensors, including steady-state response and transient
responses. In the early stages of the published history of
E-noses, a variety of steady-state models (maximum value)
have been used as feature extraction method for gas sensor
signals, as illustrated in Table 1.

Besides the steady-state features of response curves, various
other transient features such as derivatives and integrals of
original response curves were taken into research in many spe-
cial applications [21]-[23]. Moreover, in a recent paper [24],
we have used two transient parameters in order to enhance the
classification performance of a WO3 gas sensor based pattern
recognition system. These parameters are the first derivative
and the integral of the temporal response R(z) of the gas
Sensor.

All these features are used if the signal on which is based
the electronic nose is the temporal response R(f) of the
gas sensor (Fig. 2). However, in case of noise spectroscopy-
based electronic nose, the useful signal is no longer the
temporal response of the gas sensor; it is the fluctuations
of the gas sensor response called gas sensor noise (noted
by 0R(z) in Fig. 2) which is superposed with the temporal
response R(t). Hence, all the features used in our previous
work or cited in literature are no longer valuable. Thus, in this
study we propose to draw inspiration from these last transient
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Fig. 2. Typical response R(f) of a MOX gas sensor and its
fluctuations JR (7).

features by defining new feature which is calculated on the
basis of the PSD of the gas sensor noise noted by S(f).

The proposed feature will be the first derivative of the power
spectral density (PSD) of the gas sensor noise defined by:

dSnoise (f)
af

where S,pise(f) is the PSD of the gas sensor noise.

In this study we propose to calculate the theoretical expres-
sion of the first derivate of the PSD of the gas sensor noise,
to seek if there is a correlation between this expression and
the nature of the detected gas, and to compare the obtained
theoretical result with experimental results.

Spoise(f) = (1)

III. THEORETICAL ANALYSIS

In our previous work [25], we have developed a model of
noise in metallic-oxide gas micro sensors. We have shown
that the adsorption-desorption (A-D) noise generated in the
overall sensing layer is a combination of multi-Lorentzian
components. The number of Lorentzians is independent of the
nature of the detected gas. The parameters of each Lorentzian
depend on the nature of the detected gas. Moreover, we have
shown that at low frequencies the A-D noise will dominate
and at high frequencies its will be dominated by a white noise
due the thermal noise induced by the sensing layer resistance.
We have shown that the plot of the frequency dependency of
the PSD of the gas sensor noise have the shape given in Fig. 3.

The calculation of the PSD of the gas sensor noise done
in [25] has resulted in the following expression:

g
Snoise(f) = Z Li(f) + Stherm 2)
i=1
Where
H;
Li(f) = 7\ (3)
1+ (£)
and
4kT
Stherm = (4)
RS@"SO}’
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Fig. 3.  Decomposition of the overall chemisorption-induced adsorption-
desorption (A-D) noise spectrum into three Lorentzians and contribution of
the thermal noise to the overall spectrum of the sensor noise [25].

where Rsensor 18 the sensing layer resistance. Each parameter
H; and f.; are respectively the noise level and cut-off fre-
quency of the Lorentzian number i, both having expressions
which depend on the nature of the detected gas. T is the
temperature and k is the Boltzman constant. g is the number
of different grain size involved in the sensing layer microstruc-
ture.

On the basis of our previous work [25], we propose, in this
section, to calculate the theoretical expression of the first
derivative of the PSD of the gas sensor noise, and to show
that it admits a minimum which depends on the nature of the
detected gas.

Using “(1)”, we express the first derivative of the PSD of
the gas sensor noise by:

nozse(f) nolse(f) z:l dL dLi(f) +0= Z L (f) (5)
where
dL;
Li(f) = d}f U i ®)
ci [1 +;_§}

Thus, we obtain the theoretical expression of the first deriva-
tive of the PSD of the gas sensor noise:

8

H;
Sr/zoise(f) = _22 F f R B @)
5]

From “(7)”, we can conclude that, in order to plot the curve
of the first derivative of PSD of the sensor noise, it is more
convenient to begin by considering the first derivative of a
single Lorentzian L’(f). Then, once we obtain the plot of
one first derivative L}(f), we can easily deduce the plot of
the first derivative of the whole PSD of the sensor noise.

In order to plot the frequency dependence of the first
derivative of a single Lorentzian L} (f) we should better make
a mathematical study of the function L!(f) for positive fre-
quencies. This mathematical study can be done by calculating
the first derivative of L;(f) (that means the second derivative
of L;(f)) and studying its sign for positive frequencies.

L’ min

Fig. 4. Plot of the first derivative of L;( f) (H; and f,; are chosen arbitrary
(respectively 16 and 8) to show the shape of the plot).

The calculation of the second derivative of L’(f) gives:

1-3L
H: - 2
Li(f) = 25—

ct|:1+%i|

Using “(6)”, we can easily show that L;(f) has a minimum
at the frequency f.;/+/3 and this minimum is:

fei 9 H;

= 9
«/—) 8«/§fci ( )

By studying the sign of the expression given in “(6)”,
we obtain the plot of the function L’(f) (see Fig. 4).

Hence, the first derivative of each lorentzian L’(f) has
a minimum (whose expression is given by 7(9)”) at the
frequency fei /+/3.

Now, let’s extend our mathematical analysis to the first
derivative of the whole PSD of the gas sensor noise S, ;. (f).
Equation (5) shows that the first derivative of the PSD of the
gas sensor noise (S) .. (f)) is a summation of multi functions
(Li(f))1<i<g- Besides, we have just shown that each function
L’(f) has a minimum L/ . at a frequency fei/4/3. Thus,
we can easily show that the function S’ . (f) has also a

noise
minimum S at a frequency fo which satisfies (see Appendix):

fa o fa
VARV
SO = S;lotse(f())

In Fig. 5, we show an example of a plot of the first derivative
of the PSD of the gas sensor noise considering a combination
of four functions (L] (f))1<i<4

Moreover, from “(4)” and “(5)”, the first derivative of the
PSD of the gas sensor noise S, . (f) can be mathematically
considered as a parametric function, which has 2g parameters.
These parameters are the various noise levels (H;)1<j<g and
cut off frequencies (f:i)1<i<g which are involved in the
expression of the PSD of the gas sensor noise (see “(2)”
and “(3)”). Bearing in mind that all these parameters depend
on the nature of the detected gas (see [25]), it is clear that the
output of each input by this function depends on the nature
of the detected gas. Using “(9)”, we can easily see that the

@)

L =L

i min

(10)
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Fig. 5. An example of a simulation of the first derivative of the PSD of the
gas sensor noise.

minimum S, of the first derivative S) . (f) is the output of
fo by the function

S oise(f);: it expresses by:

g
S 6= Shoise(fo) = =22 Ly
=1 7 |:1+_%i|

ci

Y

Finally, we have shown that the first derivative of the PSD
of the gas sensor noise has a minimum which depends on
the nature of the detected gas. This theoretical result will be
compared with experimental results in the following section.

1V. EXPERIMENTAL VALIDATION

In order to check the consistency of this gas identifica-
tion method, we will apply it to some experimental results
by plotting the frequency dependency of the first derivative
(S) pise—meas () of the PSD of the measured gas sensor noise
(Snoise—meas (f)) for different gases and comparing it to the
theoretical analysis shown in section 3.1. However, before
that, we have to check the consistency of the theoretical
model of the gas sensor noise (given by “(2)”) on which our
new gas identification method is based. Hence, in order to
plot S .. . ...(f, we have to measure the gas sensor noise
Snoise—meas (f) under different gases and compare the obtained
experimental noise spectra to the theoretical model. After that,
we calculate (using the ORIGIN software) the first derivative
of the measured gas sensor noise spectra S, ... (f), and

we plot it for different gases.

A. Noise Responses Under Different Gases

Experimental noise measurements have been performed
on metal-oxide gas microsensors with WO3 sensing layer.
WOs3 thin films were prepared by reactive radio frequency
(13.56 MHz) magnetron sputtering, using a 99.9% pure tung-
sten target. The films were sputtered on SiO,/Si substrates with
platinum electrodes, in a reactive atmosphere of oxygen-argon
mixture.

The experimental setup, which we used to measure the
sensor noise response in various gases, is presented in Fig. 6.
The power spectrum of the amplified current fluctuations
across the sensor is measured in the frequency range of 0.1 Hz
— 100 kHz using low noise current preamplifier. The sensors
are placed in a stainless steel measurement chamber where
mixed gases can be admitted and evacuated via distribution
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Fig. 6.  General Diagram of measurements system used to characterize
MiCrosensor noise responses.

valves. The gas chamber, the preamplifier, the sensors biasing
and the power supply for sensor local heating are incorporated
in a Faraday cage. All these devices are battery powered. For
the present study, the gas sensor was exposed to three gases:
carbon monoxide, nitrogen dioxide and ozone, diluted in dry
air.

In order to quantify the effect of various chemical envi-
ronments on the resistance of the sensing layer we compare
the PSD of the current fluctuations in three chemical species.
In Fig. 7 we present the frequency dependency of the PSD of
gas sensor current fluctuations measured when the gas sensor
is exposed to: carbon monoxide, ozone and nitrogen dioxide.

Comparing the gas sensor’s noise measurements, given
in Fig. 6, with the theoretical spectrum obtained in our
previous paper (see Fig. 3), we can see clearly the consistency
of our previous theoretical model. Indeed, from the measured
gas sensor noise presented in Fig. 7, we note that for frequen-
cies greater than 100 Hz all spectra are almost confounded
and present a white noise. However below this frequency,
the overall spectrum of the gas sensor noise is a combination
of multi Lorentzians. This result was shown in our previous
paper [25]. Moreover, in the model presented in our previous
paper [25], we have shown that the number of lorentzians is
independent of the nature of the detected gas. This result is
confirmed by the measured gas sensor noise spectra presented
in Fig. 5 where we obtained three lorentzians whatever the
tested gas.

In table II we present the extracted lorentzians parameters.
After summing the three extracted lorentzians, we obtain
the modeled plot presented by curve number 2 in Fig. 6.
We note that the curve of the modeling (curve 2) is almost
confounded with that of the measure (curve 1). That means the
noise generated by the adsorption of either carbon monoxide,
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ozone or nitrogen dioxide is described by a decomposition into
three Lorantzians. The number of lorentzians is independent
of the nature of the detected gas. Using a modeling of all
lorentzians (see Fig. 6), we get an extraction of all lorentzians
parameters given in table II. From the various values given in
table II we note that extracted parameters of each lorentzian
involved in the expression of the PSD of the gas sensor noise
depend on the nature of the detected gas. These results show
the consistency of the theoretical model of the PSD of the gas
sensor noise given in our previous paper [25].

B. First Derivative of the PSD of the Noise Responses Under
Different Gases
The first derivative S, . se—meas (f) of the PSD of the

measured gas sensor noise is calculated using the ORIGIN
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Fig. 8. Plots of the first derivative of the PSD of the gas sensor noise under
carbon monoxide, ozone and nitrogen dioxide.

TABLE 1I
EXTRACTED NOISE PARAMETERS

Gases O; CcO NO,
H, (A/Hz)  7.10" 2,107 1,5. 10"
for (Hz) 0,3 0,25 0,2
H, (4/Hz)  4.10™" 55108 7.10"
fo2 (Hz) 0,55 0,7 0,85
H; (A/Hz) 453107 6.10"° 510
fos (Hz) 5 11 9,5
Su(A/Hz) 12,107 15107 2,107

software. In Fig.8 we present the plots of the first derivative of
the PSD of the gas sensor noise response under carbon monox-
ide, ozone and nitrogen dioxide. From these plots we can see
clearly that either in case of carbon monoxide, ozone or nitro-
gen dioxide, the first derivative of the measured gas sensor
noise spectrum present a negative minimum S$’¢ gxp which
is in consistency with our theoretical result. Moreover, from
the values of S’oexp shown in Table III, we note that each



TABLE III

MINIMUM OF THE FIRST DERIVATIVE OF THE
PSD OF THE GAS SENSOR NOISE

Gases O3 NO, co

-7,7.10°" -1,77. 107

Soap 39107

gas has a specific value of the minimum of the first derivative
of the PSD of the gas sensor noise. However, a similarity
between the values of S’oexp Obtained in case of NO; and O3
can be easily noted. In fact, from “(11)”, we can see clearly
that the minimum of the PSD of the gas sensor noise depends
on two parameters: H; and f;;. Indeed, these parameters are
expressed in [25], where we have shown that they depend
on the nature of the detected gas by means of the molecule
mass and size, and its adsorption energy. Thus, the similarity
between the values of S’ exp obtained in case of NO> and
O3 can be explained by the similarity between O3 and NO»
molecules. Indeed, the two molecules differ only by one atom
(O replaced by N), and these atoms are very close in mass
(atomic weight: 16 and 14 respectively) and radius (radius of
Van der Waals: 1.55A and 1.6 A respectively [31]).

Such result show the consistency of our gases identification
method. Thus, we have shown that the function S/, . (f) has
a minimum which depends on the nature of the detected gas.
As this minimum is rather sharp, this is a sensitive and accurate
method to identify gases.

V. CONCLUSION

In this paper, we have presented a new gases identification
method based on noise spectroscopy. It was based on the plot
of the frequency dependency of the first derivative of the power
spectral density (PSD) of the gas sensor noise. Based on our
latest noise modeling results in MOX gas sensors, we have
calculatedthe exact expression of the first derivative of the
PSD of the gas sensor noise and shown that it has a negative
minimum which depends on the nature of the detected gas.
Moreover, in order to validate this new theoretical result with
some experimental noise measurements, we have performed a
new low frequencies noise measurements in metal oxide gas
sensor under three different gases: carbon monoxide, ozone,
and nitrogen dioxide. Using the obtained noise measurements
we have confirmed the consistency of both the theoretical
model of the gas sensor noise presented in our previous paper,
and the new gases identification method which is presented in
this paper. Such a method can be used in order to fingerprint
a gas. The capability of this method for discriminating gases
can be evaluated using a principal components analysis (PCA
technique). This will be done in future work comparing several
identification methods based on FES technique.

APPENDIX

How to show that the function S/, (f) has a minimum S,
and that this minimum is reached at a frequency fy such as

ﬂ<f<ﬁ

/3

5 ,nomm

ol

Fig. 9. The first part of the plot of S, . (f).

The first derivative of the gas sensor noise S, ;. (f) is
expressed by:

, dSnotse . /
S () = el 3D o= S ()
i=1 i=1
(A.1)
Where
d i
L= _ G T (s
af 12 [1 o }
2

In order to study S, ... (f), we have to study the sign of its
first derivative which means the sign of S . (f).
The first derivativeof S’,pise (f)is:

g
S"noise(f) = D" L] (f) (A.3)
i=1
where
2
” H; -3 1{2
Li(f)= —2—27" (A4)
]
fci
From equation “(A.2)”, one can easily see that:
& "
for;achf<\/5 L;(f)<0
n . Jci
Ltz =0 (A.5)
for each f > e L;./(f) >0

ek

Let be (fe1, fo2, fe3, oneen. feg) the various cut off frequencies
involved in the expression of the PSD of the gas sensor
noise (see “(2)” and “(3)” in the manuscript), arranged in the
following way:

fcl < ch =< fc3 S = fcg (A6)
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L;(f) > Osince f > % - fijgl
cg—1

L (f) > Osince f >

«/_ V3

fcg—l
NEEEVE]

fia (A.9)
.................. ? f
c3 c2
> e > % > %
fc3 fc2 fcl

>
3 V3

V3

Hence, from “(A.3)” and “(A.4)” we can deduce that for each
frequency f < % we have:

'L/ll(f)<()sincef<%
Ly(f) < Osince f < % 3 %
Lg(f) < Osince f < Jer <& <&
V3R (A7)
Jfe2 Je3

B

Hence from “(A.1)” and “(A.5)” we deduce that for each f <
f’ we have:

Sl/1/01se(f) < 0

Now let us study the sign of S/ .
f > f‘—;

From “(A.3)” and “(A.4)”, we can confirm that for each
frequency f > % we have (A.9), as shown at the top of this
page.

Hence, from “(A.1)” and “(A.7)” we deduce that:

Jeg g ()0

V3
Finally, from “(A.7)” and “(A.8)” we conclude that:
fcl

\/_
fcg

V3

Hence, we can conclude that:

(A.8)
(f) when the frequency

for each f > (A.10)

for each f < i Sy e (f) <0

Sr/z/ozse(f) > 0

(A.11)
for each f >

the function S’

oise (f) 1s decreas-

_ 3 1 Jei

%n the interval [0, ﬁ[
ing.

Jeg

f’

- in the interval [
increasing.
On the other hand, using “(A.Z)” we deduce that:

ZL(O)_O

limf**‘oo [ notse(f)] =0

—i—oo[ the function S, . (f) is

notse

(A.12)

Hence we obtain the first part of the shape of the curve of
the function S) . (f) (see Fig. 9)

It is worth noting that the function S, .. (f) may have more
than one local minimum in this interval, but what is certain
is that it possesses an absolute minimum in this interval since
the curve decreases in the vicinity of f.;/+/3 and increases
in the vicinity of f.g /+/3. Hence we conclude that it exists a
frequency fo which satisfies:

f
NG < fo < 7
nozse(f) = n()i_ye(fo) for each f >0

The value of S) .. (fo) is the minimum of S . (f), it is

noted in the manuscript by .

(A.13)
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