M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-to detonation transition (DDT) in reactive granular materials, International Journal of Multiphase Flow, vol.12, issue.6, pp.861-889, 1986.

M. R. Baer, A model for interface temperatures induced by convection heat transfer in porous materials (SAND-88-1073), 1989.

A. Bedford and D. S. Drumheller, Theories of immiscible and structured mixtures, Int. J. Eng. Sci, vol.21, issue.8, p.863, 1983.

L. Borne, A. ;. Beaucamp, J. Mory, and F. Schlesser, Reduced sensitivity RDX (RS-RDX) in pressed formulations: Respective effects of intra-granular pores, extra-granular pores and pore sizes, 12th Detonation Symposium Borne, vol.33, pp.37-43, 2002.

F. P. Bowden, M. A. Stone, and G. K. Tudor, Hot spots on rubbing surfaces and the detonation of explosives by friction, In Proceedings of the Royal Society of London A, vol.188, pp.329-349, 1014.

F. P. Bowden, A. D. Yoffe, . R. ;-r, and D. Price, Studies in the transition from deflagration to detonation in granular explosives -III -Proposed mechanisms for transition and comparison with other proposals in the literature, Combust. Flame, vol.22, p.161, 1952.

A. W. Campbell and R. Engelke, Proceedings-Sixth Symposium (International) on Detonation, pp.642-652, 1976.

S. Chakravarthy, K. A. Gonthier, and R. Panchadhara, Analysis of mesoscale heating by piston supported waves in granular metalized explosive. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.5, p.55016, 2013.

S. Chakravarthy and K. A. Gonthier, Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive, Journal of Applied Physics, vol.120, issue.2, p.24901, 2016.

S. K. Chidester, C. M. Tarver, and R. Garza, Low amplitude impact testing and analysis of pristine and aged solid high explosives. Eleventh International Detonation Symposium, 1998.

A. Chinnayya, E. Daniel, and R. Saurel, Modelling detonation waves in heterogeneous energetic materials, Journal of Computational Physics, vol.196, issue.2, pp.490-538, 2004.

S. G. Cochran and J. Chan, Shock initiation and detonation models in one and two dimensions. UCID-18024, 1979.

D. S. Drumheller, M. E. Kipp, and A. Bedford, Transient wave propagation in bubbly liquids, J. Fluid Mech, vol.119, p.347, 1982.

P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mechanics and Thermodynamics, vol.4, issue.4, pp.279-312, 1992.

S. Ergun, Fluid flow through packed columns, Chem. Eng. Progress, vol.48, 1952.

C. A. Forest, Burning and detonation, 1981.

R. B. , The initiation of explosive charges by rapid shear. Army ballistic research lab, 1980.

R. B. Frey, Cavity Collapse in Energetic Materials (BRL-TR-2748). Army ballistic research lab, 1986.

L. E. Fried, W. M. Howard, and P. C. Souers, , 1998.

D. Furfaro and R. Saurel, A simple HLLC-type Riemann solver for compressible nonequilibrium two-phase flows, Computers & Fluids, vol.111, pp.159-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278892

S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, Journal of Computational Physics, vol.175, issue.1, pp.326-360, 2002.

T. R. Gibbs, A. Popolato, J. Gilbert, S. Chakravarthy, and K. A. Gonthier, Computational analysis of hot-spot formation by quasi-steady deformation waves in porous explosive, Journal of Applied Physics, vol.113, issue.19, p.194901, 1980.

K. A. Gonthier, Predictions for weak mechanical ignition of strain hardened granular explosive, Journal of applied physics, vol.95, issue.7, pp.3482-3494, 2004.

P. F. Gough and F. J. Zwarts, Modeling heterogeneous two-phase reacting flow, AIAA J, vol.17, pp.17-25, 1979.

R. L. Gustavsen, S. A. Sheffield, R. R. Alcon, and L. G. Hill, Shock initiation of new and aged PBX 9501 measured with embedded electromagnetic particle velocity gauges, 1999.

Y. Hamate and Y. Horie, Ignition and detonation of solid explosives: a micromechanical burn model, Shock Waves, vol.16, issue.2, pp.125-147, 2006.

B. F. Henson, L. Smilowitz, B. W. Asay, and P. M. Dickson, Thermodynamics. Journal of Chemical Physics, vol.117, issue.8, pp.3780-3788, 2002.

T. L. Jackson, J. D. Buckmaster, J. Zhang, and M. J. Anderson, Pore collapse in an energetic material from the micro-scale to the macro-scale, Combustion Theory and Modelling, vol.19, issue.3, pp.347-381, 2015.

J. N. Johnson, P. K. Tang, and C. A. Forest, Shock-wave initiation of heterogeneous reactive solids, Journal of Applied Physics, vol.57, issue.9, pp.4323-4334, 1985.

M. J. Kamlet and S. J. Jacobs, The chemistry of detonations. 1 -A simple method for calculating detonation properties of CHNO explosives. (No. NOLTR-67-66), Naval Ordonnance Lab, 1967.

J. Kang, P. B. Butler, and M. R. Baer, A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials, Combustion and flame, vol.89, issue.2, pp.117-139, 1992.

A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations, Physics of Fluids, vol.13, issue.10, pp.3002-3024, 2001.

B. A. Khasainov, A. A. Borisov, B. S. Ermolaev, and A. I. Korotkov, Two-phase visco-plastic model of shock initiation of detonation in high density pressed explosives, 7th symposium (international) on detonation, pp.435-447, 1981.

H. Krier, S. Rajan, and W. F. Van-tassell, Flame spreading and combustion in packed beds of propellant grains, AIAA Journal, vol.14, issue.3, pp.301-309, 1976.

K. K. Kuo, V. Yang, and B. B. Moore, Intergranular stress particle-wall friction and speed of sound in granular propellant beds, J. Ballist, vol.4, issue.1, pp.697-730, 1980.

E. L. Lee and C. M. Tarver, Phenomenological model of shock initiation in heterogeneous explosives, Physics of Fluids, vol.23, issue.12, pp.2362-2372, 1980.

E. L. Lee, H. C. Horning, and J. W. Kury, Adiabatic Expansion of High Explosives Detonation Products, 1968.

L. Metayer, O. Massoni, J. Saurel, and R. , Modelling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics, vol.205, issue.2, pp.567-610, 2005.

J. T. Mang, C. B. Skidmore, S. F. Son, R. P. Hjelm, and T. P. Rieker, An optical microscopy and small-angle scattering study of porosity in thermally treated PBX9501. Shock Compression of Condensed Matter, 2001.

J. Massoni, R. Saurel, G. Baudin, and G. Demol, A mechanistic model for shock initiation of solid explosives, Physics of Fluids, vol.11, issue.3, pp.710-736, 1999.

R. Menikoff and M. S. Shaw, Reactive burn models and ignition & growth concept, EPJ Web of Conferences, vol.10, 2010.

R. Menikoff and T. D. Sewell, Constituent properties of HMX needed for mesoscale simulations. Combustion theory and modelling, vol.6, pp.103-125, 2002.

A. M. Niles, F. Garcia, D. W. Greenwood, J. W. Forbes, C. M. Tarver et al., Measurement of low level explosives reaction in gauged multi-dimensional Steven impact tests, 2001.

S. L. Passman, J. W. Nunziato, E. K. Walsh, and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, Springer New York Saurel, vol.150, pp.425-467, 1984.

R. Saurel and J. Massoni, A preliminary study of shock initiation of composite solid energetic material by friction mechanism, Comp. Fluid Dyn. J, issue.7, pp.463-484, 1999.

R. Saurel, F. Petitpas, and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows, Journal of Fluid Mechanics, vol.607, pp.313-350, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00333908

R. Saurel, N. Favrie, F. Petitpas, M. Lallemand, and S. L. Gavrilyuk, Modeling dynamic and irreversible powder compaction, Journal of Fluid Mechanics, vol.664, pp.348-396, 2010.

R. Saurel, S. Le-martelot, R. Tosello, and E. Lapebie, Symmetric model of compressible granular mixtures with permeable interfaces, Physics of Fluids, vol.26, issue.12, p.123304, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01459320

P. K. Tang, J. N. Johnson, and C. A. Forest, Modeling heterogeneous high explosive burn with an explicit hot-spot process (LA-UR-85-769; CONF-850706-5), J. Fluid Mech, vol.33, p.465, 1968.