C. Breen, L. Khan, and P. A. , Image Classification Using Neural Networks and Ontologies, Proc. 13th International Workshop on Database and Expert Systems Applications, pp.98-102, 2002.

T. Blaschke, S. Lang, and G. J. Hay, Object-Based Image Analysis: Spatial Concepts for KnowledgeDriven Remote Sensing Applications, 2008.

M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen et al., Big Data for Remote Sensing: Challenges and Opportunities, Proceedings of the IEEE, vol.104, issue.11, pp.2207-2219, 2016.

N. Durand, Ontology-based object recognition for remote sensing image interpretation, 19th IEEE international conference on tools with artificial intelligence, pp.472-479, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01463170

X. Huang and J. R. Jensen, A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data, Photogrammetric Engineering and Remote Sensing, vol.63, pp.1185-1194, 1997.

S. Gadal, Geographic Space Ontology, LocusObject, and Spatial Data Representation Semantic Theory. Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data, pp.9786-9787, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01419271

S. Gadal and W. Ouerghemmi, Morpho-Spectral Recognition of Dense Urban Objects by Hyperspectral Imagery, ISPRS Geospatial week, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01349835

S. Gadal and O. W. , Morpho-spectral objects classification by hyperspectral airborne imagery, Proceedings of the 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359702

S. Gadal and O. W. , Multi-Level Morphometric Characterisation of Built-ups in Siberian Sub-Arctic Urban Area: Yakutsk, GEOBIA 2018: From pixels to ecosystems and global sustainability, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826892

S. Gadal and W. Ouerghemmi, Multi-Level Morphometric Characterization of Built-up Areas and Change Detection in Siberian Sub-Arctic Urban Area: Yakutsk. ISPRS, Int. J. Geo-Inf, vol.8, p.129, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02056619

J. Mennis and D. Guo, Spatial data mining and geographic knowledge discovery-An introduction, Computers, Environment and Urban Systems, vol.33, pp.198-9715, 2009.

G. Mozgeris, V. Juodkien?, D. Jonikavi?ius, L. Straigyt?, and S. Gadal, Ultra-Light Aircraft Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment, Remote Sensing, issue.10, p.10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01903469

W. Ouerghemmi, S. Gadal, G. Mozgeris, D. Jonikavi?ius, and C. Weber, Urban objects classification by spectral library: feasibility and applications, Joint Urban Remote Sensing Event (JURSE), pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01492070

W. Ouerghemmi, S. Gadal, and . G. Mozgeris, Urban Vegetation Mapping using Hyperspectral Imagery and Spectral Library, IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2018, pp.1632-1635, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01852849

W. Ouerghemmi, S. Gadal, G. Mozgeris, J. , and D. , Urban vegetation mapping by airborne hyperspectral imagery: feasability and limitations, WHISPER 2018: 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp.245-249, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01884425

T. Vopham, J. E. Hart, F. Laden, and Y. Y. Chiang, Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental health: a global access science source, vol.17, p.40, 2018.

C. Weber, R. Aguejdad, X. Briottet, J. Aval, and . Fabre, Hyperspectral Imagery for Environmental Planning, Proc. of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia (E), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01854904

M. Zakharov, V. Filippova, A. Savvinova, K. Pestereva, and S. Gadal, Recognition of Landscape Structures by Toponymical Map and Remote Sensing Analysis (Khangalassky district, Yakutia), IX Arctic Congress in Social Sciences (ICASS IX): "People and Place, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01816634