|. Reports, , vol.9, p.1194, 2019.

P. K. Jain, K. S. Lee, I. H. El-sayed, and M. A. El-sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B, vol.110, pp.7238-7248, 2006.

S. Nie, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science, vol.275, pp.1102-1106, 1997.

K. Kneipp, Surface-enhanced Raman scattering, Phys. Today, vol.60, pp.40-46, 2007.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-sayed, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev, vol.41, pp.2740-2779, 2012.

L. R. Hirsch, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci, vol.100, pp.13549-13554, 2003.

, Scientific RepoRts |, vol.9, p.1194, 2019.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett, vol.5, pp.709-711, 2005.

X. Huang, I. H. El-sayed, W. Qian, and M. A. El-sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc, vol.128, pp.2115-2120, 2006.

K. Sokolov, Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles, Cancer Res, vol.63, 1999.

A. M. Gobin, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy, Nano Lett, vol.7, pp.1929-1934, 2007.

Y. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain, Nano Lett, vol.4, pp.1689-1692, 2004.

M. Yu and J. Zheng, Clearance pathways and tumor targeting of imaging nanoparticles, ACS Nano, vol.9, pp.6655-6674, 2015.

W. D. James, L. R. Hirsch, J. L. West, P. D. O'neal, and J. D. Payne, Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice, J. Radioanal. Nucl. Chem, vol.271, pp.455-459, 2007.

S. Dasgupta, T. Auth, and G. Gompper, Shape and orientation matter for the cellular uptake of nonspherical particles, Nano Lett, vol.14, pp.687-693, 2014.

B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett, vol.6, pp.662-668, 2006.

Z. Li, RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy ?, Mol. Pharm, vol.7, pp.94-104, 2010.

M. Quinten, The color of finely dispersed nanoparticles, Appl. Phys. B Lasers Opt, vol.73, pp.317-326, 2001.

A. Reinholdt, Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles, Eur. Phys. J. D, vol.31, pp.69-76, 2004.

U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications, Appl. Phys. B Lasers Opt, vol.107, pp.285-291, 2012.

U. Guler, V. M. Shalaev, and A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides, Mater. Today, vol.18, pp.227-237, 2015.

U. Guler, S. Suslov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Colloidal plasmonic titanium nitride nanoparticles: properties and applications, vol.4, pp.269-276, 2015.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold, Sci. Rep, vol.6, p.38647, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413302

R. P. Van-hove, I. N. Sierevelt, B. J. Van-royen, and P. A. Nolte, Titanium-nitride coating of orthopaedic implants: a review of the literature, Biomed Res. Int, vol.2015, pp.1-9, 2015.

W. He, Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy, Biomaterials, vol.132, pp.37-47, 2017.

X. Yang, C. Li, L. Yang, Y. Yan, and Y. Qian, Reduction-nitridation synthesis of titanium nitride nanocrystals, J. Am. Ceram. Soc, vol.86, pp.206-208, 2003.

H. Zhang, F. Li, and Q. Jia, Preparation of titanium nitride ultrafine powders by sol-gel and microwave carbothermal reduction nitridation methods, Ceram. Int, vol.35, pp.1071-1075, 2009.

J. Li, Synthesis of nanocrystalline titanium nitride powders by direct nitridation of titanium oxide, J. Am. Ceram. Soc, vol.84, pp.3045-3047, 2001.

J. Tavares, S. Coulombe, and J. Meunier, Synthesis of cubic-structured monocrystalline titanium nitride nanoparticles by means of a dual plasma process, J. Phys. D. Appl. Phys, vol.42, p.102001, 2009.

S. M. Kumar, K. Murugan, S. B. Chandrasekhar, and N. Hebalkar, Synthesis and characterization of nano silicon and titanium nitride, J. Chem. Sci, vol.124, pp.557-563, 2012.

A. Alvarez-barragan, N. V. Ilawe, L. Zhong, B. M. Wong, and L. Mangolini, A Non-Thermal Plasma Route to Plasmonic TiN Nanoparticles, J. Phys. Chem. C, vol.121, pp.2316-2322, 2017.

A. V. Kabashin and M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, J. Appl. Phys, vol.94, p.7941, 2003.

A. V. Kabashin and M. Meunier, Femtosecond laser ablation in aqueous solutions: a novel method to synthesize non-toxic metal colloids with controllable size, J. Phys. Conf. Ser, vol.59, pp.354-359, 2007.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution, Appl. Phys. A Mater. Sci. Process, vol.80, pp.753-758, 2005.

J. P. Sylvestre, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, J. Phys. Chem. B, vol.108, pp.16864-16869, 2004.

S. Besner, A. V. Kabashin, and M. Meunier, Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation, Appl. Phys. Lett, vol.89, pp.1-4, 2006.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water, Nanotechnology, vol.26, p.65601, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01418517

F. Correard, Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications, Int. J. Nanomedicine, vol.9, pp.5415-5445, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01310706

P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 1997.

J. T. Robinson, High performance in vivo near-IR (>1 ?m) imaging and photothermal cancer therapy with carbon nanotubes, Nano Res, vol.3, pp.779-793, 2010.

G. Baffou and R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat, Laser Photon. Rev, vol.7, pp.171-187, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904949

C. R. Thoma, M. Zimmermann, I. Agarkova, J. M. Kelm, and W. Krek, 3D cell culture systems modeling tumor growth determinants in cancer target discovery, Adv. Drug Deliv. Rev. 69, vol.70, pp.29-41, 2014.

D. T. Leong and K. W. Ng, Probing the relevance of 3D cancer models in nanomedicine research, Adv. Drug Deliv. Rev. 79, vol.80, pp.95-106, 2014.

W. Busch, Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties, J. Nanoparticle Res, vol.13, pp.293-310, 2011.

D. P. O'neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, Photo-thermal tumor ablation in mice using near infraredabsorbing nanoparticles, Cancer Lett, vol.209, pp.171-176, 2004.

A. Al-kattan, Ultrapure laser-synthesized Si nanoparticles with variable oxidation states for biomedical applications, J. Mater. Chem. B, vol.4, pp.7852-7858, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01772516

J. L. Lábár, Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program, Ultramicroscopy, vol.103, pp.237-249, 2005.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

, Scientific RepoRts |, vol.9, p.1194, 2019.