L. Aimola, I. Schindler, A. M. Simone, and A. Venneri, Near and far space neglect: Task 782 sensitivity and anatomical substrates, Neuropsychologia, vol.50, pp.1115-1123, 2012.

,

E. Ambrosini and M. Costantini, Handles lost in non-reachable space, Exp Brain Res, vol.229, pp.785-197, 2013.

C. Babiloni, F. Carducci, F. Cincotti, P. M. Rossini, C. Neuper et al., Human Movement-Related Potentials vs Desynchronization of EEG Alpha Rhythm: A 788 High-Resolution EEG Study, NeuroImage, vol.787, pp.658-665, 1999.

,

A. Bartolo, Y. Coello, M. G. Edwards, S. Delepoulle, S. Endo et al., , 2014.

, Contribution of the motor system to the perception of reachable space: an fMRI study, European 792 Journal of Neuroscience, vol.40, pp.3807-3817

A. Bartolo, Y. Rossetti, P. Revol, C. Urquizar, L. Pisella et al., Reachability 794 judgement in optic ataxia: Effect of peripheral vision on hand and target perception in depth, 2018.

, Cortex, vol.98, pp.102-113

A. Berti and F. Frassinetti, When far becomes near: Remapping of space by tool use, Journal 797 of cognitive neuroscience, vol.12, pp.415-420, 2000.

C. Bourdin, L. Bringoux, G. M. Gauthier, and J. L. Vercher, Vision of the hand prior to 799 movement onset allows full motor adaptation to a multi-force environment, Brain Research 800 Bulletin, vol.71, pp.101-110, 2006.

C. Bourdin, G. Gauthier, J. Blouin, and J. Vercher, Visual feedback of the moving arm 802 allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human 803 subjects, Neuroscience letters, vol.301, pp.1584-1585, 2001.

J. Bourgeois and Y. Coello, Effect of visuomotor calibration and uncertainty on the 805 perception of peripersonal space, Perception, & Psychophysics, vol.74, pp.1268-1283, 2012.

,

J. Bourgeois, A. Farnè, and Y. Coello, Costs and benefits of tool-use on the perception of 808 reachable space, Acta Psychol (Amst), vol.148, pp.91-95, 2014.

L. E. Brown, E. T. Wilson, M. A. Goodale, and P. L. Gribble, Motor Force Field Learning, p.810, 2007.

, Influences Visual Processing of Target Motion, Journal of Neuroscience, vol.27, pp.9975-9983

,

C. Brozzoli, L. Cardinali, F. Pavani, and A. Farnè, Action-specific remapping of 813 peripersonal space, Neuropsychologia, The Sense of Body, vol.48, pp.796-802, 2010.

,

R. J. Bufacchi and G. D. Iannetti, An Action Field Theory of Peripersonal Space, Trends in, p.816, 2018.

, Cognitive Sciences, vol.22, pp.1076-1090

L. L. Bursztyn, G. Ganesh, H. Imamizu, M. Kawato, and J. R. Flanagan, Neural 818 Correlates of Internal-Model Loading, Current Biology, vol.16, pp.2440-2445, 2006.

,

V. Caggiano, L. Fogassi, G. Rizzolatti, P. Thier, and A. Casile, Mirror neurons differentially 821 encode the peripersonal and extrapersonal space of monkeys, Science, vol.324, pp.403-406, 2009.

,

E. Canzoneri, S. Ubaldi, V. Rastelli, A. Finisguerra, M. Bassolino et al., Tool-use 824 reshapes the boundaries of body and peripersonal space representations, Exp Brain Res, vol.228, pp.25-42, 2013.

P. Cardellicchio, C. Sinigaglia, and M. Costantini, The space of affordances: A TMS study, 2011.

, Neuropsychologia, vol.49, p.38

L. Cardinali, F. Frassinetti, C. Brozzoli, C. Urquizar, A. C. Roy et al., Tool-use 829 induces morphological updating of the body schema, Current Biology, vol.19, pp.478-479, 2009.

,

C. Carello, A. Grosofsky, F. D. Reichel, H. Y. Solomon, and M. T. Turvey, Visually 832 Perceiving What is Reachable, Ecological Psychology, vol.1, pp.27-54, 1989.
DOI : 10.1207/s15326969eco0101_3

,

A. Cartaud, G. Ruggiero, L. Ott, T. Iachini, and Y. Coello, , 2018.

, Expressions in Peripersonal Space Determines Interpersonal Distance in a Social Interaction 836

, Context. Front. Psychol, vol.9

L. L. Chao and A. Martin, Representation of Manipulable Man-Made Objects in the Dorsal 838, 2000.

, Stream. NeuroImage, vol.12, pp.478-484

L. L. Chao, J. Weisberg, and A. Martin, Experience-dependent modulation of category-840 related cortical activity, Cereb. Cortex, vol.12, pp.545-551, 2002.

P. Cisek and J. F. Kalaska, Neural mechanisms for interacting with a world full of action 842 choices, Annu. Rev. Neurosci, vol.33, pp.269-298, 2010.

,

G. Clément, Perception of time in microgravity and hypergravity during parabolic flight, 2018.

, NeuroReport, vol.29

J. Cléry, O. Guipponi, C. Wardak, and S. Ben-hamed, Neuronal bases of peripersonal and 847 extrapersonal spaces, their plasticity and their dynamics: Knowns and unknowns, 2015.

, Neuropsychologia, vol.70, pp.313-326

S. Cochin, C. Barthelemy, S. Roux, and J. Martineau, Observation and execution of 850 movement: similarities demonstrated by quantified electroencephalography, Eur. J. Neurosci, vol.851, issue.11, pp.1839-1842, 1999.

Y. Coello, A. Bartolo, B. Amiri, H. Devanne, E. Houdayer et al., Perceiving 853 what is reachable depends on motor representations: evidence from a Transcranial Magnetic 854 Stimulation study, PLoS ONE, vol.3, 2008.

Y. Coello, J. Bourgeois, and T. Iachini, Embodied perception of reachable space: how do we 856 manage threatening objects?, Cognitive Processing, vol.13, pp.131-135, 2012.

,

Y. Coello, J. P. Orliaguet, and C. Prablanc, Pointing movement in an artificial perturbing 859 inertial field: A prospective paradigm for motor control study, Neuropsychologia, vol.34, pp.879-892, 1996.

, , pp.3-6

M. Costantini, E. Ambrosini, G. Tieri, C. Sinigaglia, and G. Committeri, Where does an 862 object trigger an action? An investigation about affordances in space, Exp Brain Res, vol.207, pp.95-863, 2010.

S. H. Creem-regehr and J. N. Lee, Neural representations of graspable objects: are tools 865 special?, Brain Res Cogn Brain Res, vol.22, pp.457-469, 2005.

,

K. E. Cullen and J. X. Brooks, Neural Correlates of sensory prediction errors in monkeys: 868 Evidence for internal models of voluntary self-motion in the cerebellum, Cerebellum, vol.14, pp.31-869, 2015.

F. De-vignemont, Body schema and body image-Pros and cons, Neuropsychologia, vol.48, pp.669-680, 2010.
URL : https://hal.archives-ouvertes.fr/ijn_00512315

F. De-vignemont and G. D. Iannetti, How many peripersonal spaces? Neuropsychologia 70, 2014.

,

G. Di-pellegrino and E. Làdavas, Peripersonal space in the brain, Neuropsychologia, vol.66, pp.126-875, 2015.

G. Di-pellegrino, E. Làdavas, and A. Farné, Seeing where your hands are, Nature, vol.388, 1997.

P. Dizio and J. R. Lackner, Congenitally blind individuals rapidly adapt to coriolis force 879 perturbations of their reaching movements, J. Neurophysiol, vol.84, pp.2175-2180, 2000.

,

O. Donchin, K. Rabe, J. Diedrichsen, N. Lally, B. Schoch et al., Cerebellar regions involved in adaptation to force field and visuomotor perturbation, Journal of Neurophysiology, vol.883, pp.134-147, 2012.
DOI : 10.1152/jn.00007.2011

E. Dupierrix, M. Gresty, T. Ohlmann, and S. Chokron, Long Lasting Egocentric 885, 2009.

, Disorientation Induced by Normal Sensori-Motor Spatial Interaction, PLOS ONE, vol.4

M. H. Fischer, Estimating reachability: Whole body engagement or postural stability? 888 Human movement science 19, pp.16-22, 2000.
DOI : 10.1016/s0167-9457(00)00016-6

J. H. Fuller, Eye position and target amplitude effects on human visual saccadic latencies, 1996.
DOI : 10.1007/bf00229630

, Exp Brain Res, vol.109, pp.457-466

C. Gabbard, A. Cordova, and S. Lee, Examining the effects of postural constraints on 892 estimating reach, Journal of Motor Behavior, vol.39, pp.242-246, 2007.

,

J. P. Gallivan, C. Cavina-pratesi, and J. C. Culham, Is That within Reach? fMRI Reveals That 895 the Human Superior Parieto-Occipital Cortex Encodes Objects Reachable by the Hand, Journal 896 of Neuroscience, vol.29, pp.4381-4391, 2009.
DOI : 10.1523/jneurosci.0377-09.2009

URL : http://www.jneurosci.org/content/29/14/4381.full.pdf

J. P. Gallivan, A. Mclean, and J. C. Culham, Neuroimaging reveals enhanced activation in a 898 reach-selective brain area for objects located within participants' typical hand workspaces, 2011.

, Neuropsychologia, vol.49, pp.3710-3721

C. Ghez and R. Sainburg, Proprioceptive control of interjoint coordination, Canadian Journal 901 of Physiology and Pharmacology, vol.73, pp.273-284, 1995.
DOI : 10.1139/y95-038

J. M. Goldberg and C. Fernandez, Physiology of peripheral neurons innervating semicircular 903 canals of the squirrel monkey. I. Resting discharge and response to constant angular 904 accelerations, Journal of Neurophysiology, vol.34, pp.635-660, 1971.

,

A. Gouzien, F. Vignemont, . De, A. Touillet, N. Martinet et al., , p.907

A. , Reachability and the sense of embodiment in amputees using prostheses, Scientific 908 Reports, vol.7, 2017.

S. Grade, M. Pesenti, and M. G. Edwards, Evidence for the embodiment of space perception: 910 concurrent hand but not arm action moderates reachability and egocentric distance perception, 2015.

, Frontiers in Psychology, vol.6

S. T. Grafton, L. Fadiga, M. A. Arbib, and G. Rizzolatti, Premotor Cortex Activation during 913 Observation and Naming of Familiar Tools, NeuroImage, vol.6, pp.231-236, 1997.

,

M. S. Graziano and S. Gandhi, Location of the polysensory zone in the precentral gyrus of 916 anesthetized monkeys, Exp Brain Res, vol.135, pp.259-266, 2000.

N. Gruber, R. M. Müri, U. P. Mosimann, R. Bieri, A. Aeschimann et al., , p.918

T. Nyffeler and T. Nef, Effects of age and eccentricity on visual target detection, 2014.

, Aging Neurosci, vol.5

P. Haggard, M. Wolpert, and D. , Disorders of Body Scheme, 2005.

, High-Order Motor Disorders: From Neuroanatomy and 922

, Neurobiology to Clinical Neurology, pp.261-271

A. Haith and S. Vijayakumar, Implications of different classes of sensorimotor disturbance 924 for cerebellar-based motor learning models, Biol Cybern, vol.100, pp.81-95, 2009.

,

T. A. Herlihey, S. E. Black, and S. Ferber, Action modulated cognition: the influence of 927 sensori-motor experience on the global processing bias, Neuropsychologia, vol.51, pp.1973-1979, 2013.

,

B. Hommel, J. Pratt, L. Colzato, and R. Godijn, Symbolic control of visual attention, Psychol 930 Sci, vol.12, pp.360-365, 2001.

T. Iachini and Y. Coello, Embodied perception of objects and people in space: Towards a 932 unified theoretical framework, Foundations of embodied 933 cognition, pp.198-219, 2016.

T. Iachini, G. Ruggiero, F. Ruotolo, and M. Vinciguerra, Motor resources in peripersonal 935 space are intrinsic to spatial encoding: Evidence from motor interference, Acta Psychologica, vol.936, issue.153, pp.20-27, 2014.

I. P. Kan, J. W. Kable, A. Van-scoyoc, A. Chatterjee, and S. L. Thompson-schill, , 2006.

, Fractionating the left frontal response to tools: Dissociable effects of motor experience and 939 lexical competition, J. Cogn. Neurosci, vol.18, pp.267-277

,

M. Kawato, Internal models for motor control and trajectory planning, Current Opinion, vol.942, pp.28-36, 1999.

J. R. Lackner and P. Dizio, Rapid adaptation to Coriolis force perturbations of arm trajectory, 1994.

, J. Neurophysiol, vol.72, pp.299-313

E. Làdavas and A. Serino, Action-dependent plasticity in peripersonal space representations, 2008.

, Cognitive Neuropsychology, vol.25, pp.1099-1113

H. Z. Lefumat, J. Vercher, R. C. Miall, J. Cole, F. Buloup et al., , p.948

F. R. Sarlegna, To transfer or not to transfer? Kinematics and laterality quotient predict 949 interlimb transfer of motor learning, Journal of Neurophysiology, 2015.

,

C. Llanos, M. Rodriguez, C. Rodriguez-sabate, I. Morales, and M. Sabate, Mu-rhythm 952 changes during the planning of motor and motor imagery actions, Neuropsychologia, vol.51, pp.1019-953, 2013.

T. R. Makin, N. P. Holmes, and H. H. Ehrsson, On the other hand: Dummy hands and 955 peripersonal space, Behavioural Brain Research, vol.191, pp.1-10, 2008.

,

A. Maravita and A. Iriki, Tools for the body (schema), Trends Cogn. Sci. (Regul. Ed.), vol.8, pp.79-958, 2004.

W. Marinovic, E. Poh, A. De-rugy, and T. J. Carroll, Action history influences subsequent 960 movement via two distinct processes

L. S. Mark, K. Nemeth, D. Gardner, M. J. Dainoff, J. Paasche et al., , 1997.

, Postural dynamics and the preferred critical boundary for visually guided reaching, J. Exp

P. , Percept. Perform, vol.23, pp.1365-1379

M. Martel, L. Cardinali, A. C. Roy, and A. Farnè, Tool-use: An open window into body 965 representation and its plasticity, Cogn Neuropsychol, vol.33, pp.82-101, 2016.

,

A. Martin, The representation of object concepts in the brain, Annual Review of 968 Psychology, pp.25-45, 2007.

M. Matelli, G. Luppino, and G. Rizzolatti, Patterns of cytochrome oxidase activity in the 970 frontal agranular cortex of the macaque monkey, Behav. Brain Res, vol.18, pp.125-136, 1985.

, , pp.90068-90071

F. Mawase, D. Lopez, P. A. Celnik, and A. M. Haith, Movement Repetition Facilitates 973, 2018.
DOI : 10.1016/j.celrep.2018.06.097

URL : https://doi.org/10.1016/j.celrep.2018.06.097

, Response Preparation, Cell Reports, vol.24, pp.801-808

J. Medina and H. B. Coslett, From maps to form to space: Touch and the body schema, 2010.
DOI : 10.1016/j.neuropsychologia.2009.08.017

URL : http://europepmc.org/articles/pmc2813960?pdf=render

, Neuropsychologia, vol.48, p.41

C. Michel, L. Bonnetain, S. Amoura, and O. White, Force field adaptation does not alter 977 space representation, 2018.
DOI : 10.1038/s41598-018-29283-z

URL : https://www.nature.com/articles/s41598-018-29283-z.pdf

P. Morasso, Spatial control of arm movements, Exp Brain Res, vol.42, pp.223-227, 1981.
DOI : 10.1007/bf00236911

URL : http://wexler.free.fr/library/files/morasso%20(1981)%20spatial%20control%20of%20arm%20movements.pdf

,

P. Morasso, M. Casadio, V. Mohan, F. Rea, and J. Zenzeri, Revisiting the body-schema 981 concept in the context of whole-body postural-focal dynamics, Front Hum Neurosci, vol.9, 2015.

U. Noppeney, The neural systems of tool and action semantics: a perspective from 984 functional imaging, J. Physiol. Paris, vol.102, pp.40-49, 2008.

,

D. J. Ostry, M. Darainy, A. A. Mattar, J. Wong, and P. L. Gribble, Somatosensory 987 Plasticity and Motor Learning, Journal of Neuroscience, vol.30, pp.5384-5393, 2010.
DOI : 10.1523/jneurosci.4571-09.2010

URL : http://www.jneurosci.org/content/30/15/5384.full.pdf

,

D. J. Ostry and P. L. Gribble, Sensory Plasticity in Human Motor Learning. Trends in 990 Neurosciences, vol.39, pp.114-123, 2016.
DOI : 10.1016/j.tins.2015.12.006

URL : http://europepmc.org/articles/pmc4737984?pdf=render

R. Palluel-germain, F. Boy, J. P. Orliaguet, and Y. Coello, Visual and motor constraints on 992 trajectory planning in pointing movements, Neurosci. Lett, vol.372, pp.235-239, 2004.
DOI : 10.1016/j.neulet.2004.09.045

,

I. Patané, A. Farnè, and F. Frassinetti, Cooperative tool-use reveals peripersonal and 995 interpersonal spaces are dissociable, Cognition, vol.166, pp.13-22, 2017.

,

C. Pfeiffer, J. Noel, A. Serino, and O. Blanke, Vestibular modulation of peripersonal 998 space boundaries, European Journal of Neuroscience, vol.47, pp.800-811, 2018.

,

M. J. Pickering and A. Clark, Getting ahead: forward models and their place in cognitive 1001 architecture, Trends Cogn. Sci. (Regul. Ed.), vol.18, pp.451-456, 2014.

,

K. Pipereit, O. Bock, and J. Vercher, The contribution of proprioceptive feedback to 1004 sensorimotor adaptation, Exp Brain Res, vol.174, 2006.

H. Poincaré and F. Maitland, Science and Method. Courier Corporation, 2003.

F. H. Previc, The neuropsychology of 3-D space, Psychol Bull, vol.124, pp.123-164, 1998.

,

A. M. Proverbio, Tool perception suppresses 10-12Hz ? rhythm of EEG over the 1009 somatosensory area, Biological Psychology, vol.91, pp.1-7, 2012.

,

G. Rizzolatti, C. Scandolara, M. Matelli, and M. Gentilucci, Afferent properties of 1012 periarcuate neurons in macaque monkeys. II. Visual responses, Behav. Brain Res, vol.2, pp.147-163, 1981.

, , p.90053

P. Rochat and M. Wraga, An account of the systematic error in judging what is reachable, J, vol.1015, 1997.

, Exp Psychol Hum Percept Perform, vol.23, pp.199-212

S. Salenius, A. Schnitzler, R. Salmelin, V. Jousmäki, and R. Hari, Modulation of human 1017 cortical rolandic rhythms during natural sensorimotor tasks, Neuroimage, vol.5, pp.221-228, 1997.

,

R. Salmelin and R. Hari, Characterization of spontaneous MEG rhythms in healthy adults, 1994.

, Electroencephalogr Clin Neurophysiol, vol.91, issue.94, pp.90187-90189

F. R. Sarlegna, N. Malfait, L. Bringoux, C. Bourdin, and J. Vercher, Force-field 1023 adaptation without proprioception: Can vision be used to model limb dynamics?, Neuropsychologia, vol.48, p.42, 1024.

R. Shadmehr, Learning to Predict and Control the Physics of Our Movements, J. Neurosci, vol.1026, pp.1663-1671, 2017.

R. Shadmehr and F. A. Mussa-ivaldi, Adaptive representation of dynamics during learning of 1028 a motor task, J. Neurosci, vol.14, pp.3208-3224, 1994.

R. Shadmehr, M. A. Smith, and J. W. Krakauer, Error correction, sensory prediction, and 1031 adaptation in motor control, Annual Review of Neuroscience, vol.33, pp.89-108, 2010.

,

H. Tanaka and T. J. Sejnowski, Computing reaching dynamics in motor cortex with Cartesian 1034 spatial coordinates, J. Neurophysiol, vol.109, pp.1182-1201, 2013.

B. Valdés-conroy, F. J. Román, J. A. Hinojosa, and S. P. Shorkey, So Far So Good: Emotion 1036 in the Peripersonal/Extrapersonal Space, PLOS ONE, vol.7, p.49162, 2012.

,

T. Verstynen and P. N. Sabes, How Each Movement Changes the Next: An Experimental and 1039, 2011.

, Theoretical Study of Fast Adaptive Priors in Reaching, J. Neurosci, vol.31, pp.10050-10059

,

Y. Wamain, F. Gabrielli, and Y. Coello, EEG ? rhythm in virtual reality reveals that motor, 2016.

,

P. H. Weiss, Neural consequences of acting in near versus far space: a physiological basis 1045 for clinical dissociations, Brain, vol.123, pp.2531-2541, 2000.

J. K. Witt, D. R. Proffitt, and W. Epstein, Tool Use Affects Perceived Distance, But Only, p.1047, 2005.

, Journal of Experimental Psychology: Human Perception and 1048 Performance 31, pp.880-888

D. Wolpert, Z. Ghahramani, and M. Jordan, An internal model for sensorimotor integration, 1995.

, Science, vol.269, pp.1880-1882

D. M. Wolpert, Z. Ghahramani, and J. R. Flanagan, Perspectives and problems in motor 1052 learning, Trends in Cognitive Sciences, vol.5, issue.00, pp.1773-1776, 2001.

D. M. Wolpert and M. Kawato, Multiple paired forward and inverse models for motor control, 1998.

, Neural Networks, vol.11, pp.66-71

D. M. Wolpert and R. C. Miall, Forward Models for Physiological Motor Control, Neural 1057 Netw 9, pp.1265-1279, 1996.