Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue Optics Express Année : 2017

Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing

Résumé

When the energy of a short laser pulse is localized in a fluid material, a flow motion is induced that can lead to the generation of free-surface jets. This nozzle-free jetting process is exploited to print conductive materials, typically metal nanoparticle inks, but this approach remains limited to the transfer of low viscosity fluids with a minimum feature size of few microm-eters. We introduce a dual-laser method to achieve reproducible high-aspect-ratio jets from thin solid films. A first laser irradiation induces the melting of copper thin films and a second synchronized short pulse irradiation initiates the jetting process. Using time-resolved microscopy, we investigate the influence of the film thickness on the flow motion mechanisms and the ejection dynamics. For a wide range of laser fluences, we present observations similar to those obtained when the jets are generated by a single laser pulse from liquid donor films. The use of a solid film allows reducing the film thickness and then the volume of transferred material. Finally , we analyze these results in the perspective of using this double pulse LIFT technique for additive manufacturing of nano-micro-structures. Stable jets are formed from the copper films over distances exceeding 50-μm and are exploited to demonstrate periodic printing of 1.5-μm diameter droplets.
Fichier principal
Vignette du fichier
oe-25-20-24164.pdf (4.02 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02138435 , version 1 (23-05-2019)

Identifiants

Citer

Qingfeng Li, A.P. Alloncle, David Grojo, P. Delaporte. Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing. Optics Express, 2017, 25 (20), pp.24164. ⟨10.1364/OE.25.024164⟩. ⟨hal-02138435⟩
58 Consultations
52 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More