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Abstract: It has recently been claimed that the outstanding performance of machine-learning scoring
functions (SFs) is exclusively due to the presence of training complexes with highly similar proteins
to those in the test set. Here, we revisit this question using 24 similarity-based training sets, a widely
used test set, and four SFs. Three of these SFs employ machine learning instead of the classical
linear regression approach of the fourth SF (X-Score which has the best test set performance out of
16 classical SFs). We have found that random forest (RF)-based RF-Score-v3 outperforms X-Score even
when 68% of the most similar proteins are removed from the training set. In addition, unlike X-Score,
RF-Score-v3 is able to keep learning with an increasing training set size, becoming substantially more
predictive than X-Score when the full 1105 complexes are used for training. These results show that
machine-learning SFs owe a substantial part of their performance to training on complexes with
dissimilar proteins to those in the test set, against what has been previously concluded using the
same data. Given that a growing amount of structural and interaction data will be available from
academic and industrial sources, this performance gap between machine-learning SFs and classical
SFs is expected to enlarge in the future.

Keywords: machine learning; scoring function; molecular docking; binding affinity prediction

1. Introduction

A Scoring Function (SF) for structure-based protein–ligand binding affinity prediction has an
essential influence on the reliability of molecular docking. Enhancing the accuracy of SFs has proven to
be a challenging task for any class of method. SFs can be methodologically categorized into two broad
classes: classical SFs and machine-learning SFs. Classical SFs assume a predetermined theory-inspired
functional form for the relationship between the variables that characterise the complex and its
predicted binding affinity and usually adopt linear regression with a small number of expert-selected
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structural features. On the other hand, machine-learning SFs do not impose a particular functional
form for the SF. Instead, these SFs aim at implicitly capturing binding interactions that are hard to
model explicitly.

The development of SFs based on modern machine-learning regression models has been a fruitful
research topic in recent years [1–7]. These machine-learning SFs have been shown to outperform
a wide range of classical SFs at the two related problems of binding affinity prediction and virtual
screening [8]. Benchmarks to test SFs for binding affinity prediction are typically carried out using a
crystal structure for each considered protein–ligand complex, as this experimental setup does not suffer
from confounding factors such as the redocking pose error or the uncertainty of whether the molecule
actually binds to the protein. Here, we investigate how the degree of similarity between proteins in
training and test sets influence the performance of SFs. This question has recently been addressed by
Li and Yang [9], but our expanded analysis has led to other conclusions that we report here.

Li and Yang published a study [9] intended to analyse how the use of highly similar proteins
impacts the performance of SFs. More precisely, highly similar proteins were training complexes whose
proteins were highly similar to those in the test complexes. The issue was investigated for classical and
machine-learning SFs [8], with X-Score [10] as the classical SF and the first version of random forest
(RF)-based RF-Score [1] as the machine-learning SF. They focused on the ability of these SFs to predict
the binding affinities of the test protein–ligand complexes from their crystal structures (also known as
their scoring power) using a common benchmark [10]. Pearson correlation (Rp) between predicted
and measured affinities of the test set complexes was used to assess the scoring power of the two SFs.
Each SF was trained with a series of nested training sets, ranging from small sets of highly dissimilar
proteins to large sets that also include highly similar proteins (each training set is a strict subset of any
larger training set).

From those experiments, Li and Yang claimed that classical SFs have the following advantages
over machine-learning SFs:

A. The scoring power of X-Score is stable and independent of training complexes with highly similar
proteins to those in the test set, which is necessary for real-world applications.

B. The outstanding scoring power of RF-Score is due to a higher number of similar proteins and not
to increasing training set size.

C. After removal of highly similar proteins from the training set, RF-Score does not outperform
X-Score anymore.

D. The reason for the improvement of the scoring power made by machine-learning SFs
remains unclear.

2. Results

We, however, have found several issues in the experiments employed to support these claims.
First, the smallest training set already contained 116 complexes when using their protein structural
similarity ranking (cutoff = 0.4), so we added two smaller training sets with only 43 and 9 complexes
(cutoff = 0.35 and 0.3). Thus, we retrained both X-Score and RF-Score with 13 nested training sets,
which led to the corresponding 13 test set Rp values per SF shown in Figure 1. With the addition
of the two smallest training sets, it was clearer that the performance of X-Score leveled off with as
little as 116 training complexes (10.5% of the employed training data), being incapable of exploiting
similar proteins, whereas RF-Score was able to keep learning until surpassing X-Score with training
sets larger than 700 complexes. Second, we also trained and tested the third version of RF-Score [11]
(RF-Score-v3) with the same data sets (the results of RF-Score-v3 were not shown in [9]). Contrary
to what Li and Yang stated in their paper [9], some conclusions did change dramatically from theirs
when using this updated version of RF-Score: RF-Score-v3 obtained a better performance than X-Score
with training sets larger than just 371 complexes (33.6% of the training data). It is worth nothing that
these 371 complexes were the most dissimilar training samples, which means that even when trained
with a moderate percent of dissimilar proteins RF-Score-v3 would already outperform X-Score. It is
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also worth noting the large improvement in performance achieved by RF-Score-v3 over X-Score when
more training complexes were available, especially as X-Score is the SF with the best test set Rp out of
16 classical SFs [10].
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Figure 1. Test set performance of scoring functions (SFs) trained with nested datasets at different protein
structural similarity cutoffs. Each of the four SFs (see legend at the right bottom) was trained with
13 nested datasets (i.e., a larger dataset includes all the complexes from the smaller datasets), leading to
13 implementations of each SF. This method to generate datasets was introduced by Li and Yang [9] to
include training complexes with increasingly similar proteins to those in the test set (the smaller the
data set is, the lower the applied protein structural similarity cutoff was). However, to look deeper
into these questions, we incorporated two smaller training sets and also included in the comparison
two additional machine-learning SFs (RF::X-Score and RF-Score-v3). For each SF implementation,
the performance was calculated as the Pearson correlation between the predicted and the measured
binding affinities for the 195 diverse protein–ligand complexes in the test set. We can see that X-Score’s
performance levels off with as little as 116 training complexes, hence being unable to exploit the most
similar complexes. By contrast, RF-Score-v3 keeps learning, outperforming X-Score with training sets
larger than just 371 complexes. Note the large performance gap between machine-learning SFs and
X-Score when the full 1105 complexes were all used for training. Abbreviations: RF, random forest;
MLR, multiple linear regression.

The same conclusions were also reached using protein sequence similarity to define 11 nested
training sets (left plot in Figure 2), of which the two smallest sets were new in the present study,
with only 56 and 14 complexes (cutoff = 0.25 and 0.2). The performance of X-Score stagnated
with merely 181 training complexes and did not improve with more similar training complexes.
By contrast, RF-Score-v3 started to overtake X-Score with just 350 training complexes (31.7% of
the training data). Moreover, we also evaluated a RF variant of X-Score, denoted as RF::X-Score,
which employs the same features. Figures 1 and 2 demonstrate that machine-learning SFs outperform
classical SFs, given sufficient training samples. Even without introducing any further methodological
enhancement, this performance gap will broaden as more structural and interaction data become
available. For comparison, the right plot in Figure 2 reproduces the relevant part of the graphical
abstract of Li and Yang’s paper [9]. Both plots in Figure 2 employ exactly the same training and
test datasets (except for the two smallest training datasets with cutoffs 0.25 and 0.2, which were
not considered in [9]). Without these two small datasets and the two additional machine-learning
SFs and by not making explicit the number of complexes in each training set, the advantages that
machine-learning SFs have over their classical counterparts are easy to miss.
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Figure 2. Test set performance of SFs trained with nested data sets at different protein sequence
similarity cutoffs. (a) Instead of protein structural similarity (Figure 1), sequence similarity cutoffs were
here employed to build 11 nested training sets, including two training sets smaller than those previously
used in [9]. In addition, we also included in the comparison two additional machine-learning SFs
(RF::X-Score and RF-Score-v3). Each of the four SFs was trained with these nested data sets, leading
to 11 implementations of each SF. Each of the resulting 44 SF implementations was tested against the
same 195 diverse protein–ligand complexes in the test set. Analogous conclusions were reached in this
case. X-Score cannot benefit from more than 181 training samples, whereas its RF variant (denoted
as RF::X-Score) and both RF-Score and RF-Score-v3 keep learning and increasing the correlation of
their predicted binding affinities to the experimentally measured values and ultimately surpassed
X-Score. (b) This plot reproduces the relevant part of the graphical abstract of Li and Yang’s paper.
Note that, to label one training set complex as similar, it was enough that a single test set complex
had an above-cutoff similarity to the training complex. Because the test set was generated by picking
three representatives of each of the 65 sequence-based clusters, the vast majority of the remaining test
complexes would tend to contain a dissimilar protein to that of the similar training complex.

Lastly, we explain why statistical significance tests have not been carried out in comparing
classical SFs with machine-learning SFs. The multiple linear regression (MLR) method employed by
X-Score is deterministic, i.e., training X-Score with the same data set always results in the same model.
In contrast, RF is stochastic, as it involves random bootstrap sampling of the training data. Here,
we built 10 instances for each machine-learning SF and reported the average performance. This is a
usual procedure because the test set performance variability due to the stochastic nature of RF is much
smaller than the difference in performance due to modelling choices. For instance, the 10 Rp values for
RF-Score-v3 with the entire training set (1105 complexes) ranged from 0.798 to 0.803, whereas X-Score’s
Rp was just 0.643 (i.e., the median Rp of RF-Score-v3, 0.800, −31.4 times its stochastic variability range
of 0.005). Therefore, the p-values would be all extremely low and add little to the reported difference
in median values.

3. Discussion

Regarding Claim A in Section 1 (X-Score has the advantage of being independent of highly
similar proteins), Figure 1 shows that X-Score is actually unable to exploit about 89.5% of the training
complexes, including those with the most similar proteins. Figure 2 shows that the same situation
is encountered when using training sets generated with sequence similarity instead of structural
similarity. Far from being an advantage, this means that RF-Score is substantially more predictive than
X-Score, and that this performance gap will widen as more data are used for training. This is also true
for RF::X-Score in Figure 1, which is a machine-learning SF generated by employing the same data
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and terms (features) as X-Score, but adopting RF [12] instead of the linear regression characterising
classical SFs. In fact, this has also been shown to be the case for other classical SFs, which also became
more predictive after they were modified in this way (e.g., AutoDock Vina [11] or Cyscore [13]). It is
also worth mentioning that RF is not the only machine-learning algorithm that leads to strongly
outperforming X-Score and other classical SFs, e.g., this is also the case of support vector regression
(SVR) using the same features and data set as X-Score [14].

It is easy to see that Claim B (RF-Score’s performance is exclusively due to a higher number
of highly similar proteins in the training set and not to larger training set sizes) does not hold.
New protein–ligand complexes for training may contain proteins with any degree of similarity to
those in the test set. A certain proportion of these complexes will therefore contain highly similar
proteins. Consequently, increasing the training set size will also increase the number of highly similar
proteins. In fact, the scoring power of machine-learning SFs has already been demonstrated to increase
with the training set size elsewhere [2,11,13,15]. Furthermore, it is important to note that any decrease
in performance following the removal of a training set complex similar to a test set complex might
also be due to larger errors on the other 194 test complexes. Moreover, RF-Score-v3 outperformed
X-Score even when the 734 complexes with the most structurally similar proteins were not included
in the training set (755 of the 1105 complexes when carrying out the same experiment with sequence
similarity). These results show that the large difference in test set performance was not only due to the
highly similar proteins in the training set.

We are puzzled about Claim C (X-Score is better than RF-Score if we remove all the highly
similar proteins from the training set): why would anyone want to remove the most relevant data
for prediction? Since data from highly similar proteins are the most suitable for training SFs on this
problem, it does not make any sense to remove them, and therefore RF-Score outperforms X-Score in
predicting the binding affinities of a diverse set of complexes. Machine-learning SFs have indeed been
implemented with as much training data as possible [16,17]. A different scenario, not considered by
Li and Yang, would be to compare the SFs on a target with few training complexes (e.g., because the
target is hard to co-crystallise with ligands). We think that the niche of classical SFs could be in this
type of targets, as suggested by results with the smallest training sets in Figure 1. However, it should
be noted that SFs do not only learn from complexes containing proteins with high global similarity
(e.g., RF-Score excels at predicting the binding affinities of P38 kinase complexes when trained with
complexes not including this target [18,19]). There are many reasons that could explain this behaviour,
such as the fact that the same ligand–binding domain may be found in globally dissimilar proteins.

Lastly, regarding Claim D (the reason for RF-Score superiority remains unclear), we argue that
the reason for the improvement of the scoring power made by machine-learning SFs has actually
been quite clear since the original RF-Score was published [1]. Machine-learning algorithms are on
average better at relating interatomic features characterising a complex with its binding affinity than
the linear regression techniques employed by classical SFs [8]. Figures 1 and 2 demonstrate this point:
RF::X-Score outperforms X-Score using the same features and the full 1105 complexes for training
(i.e., when both SFs only differ in the employed regression algorithm). The same has been shown for
other classical SFs (e.g., AutoDock Vina [11] or Cyscore [13]). In supporting this claim, Li and Yang
affirmed that machine-learning SFs have been found to have much worse virtual screening power than
classical SFs [20], but this is factually incorrect. That study actually showed that the original version of
RF-Score, which was designed for the scoring power, does not offer competitive performance in the
related problem of virtual screening. Nevertheless, many machine-learning SFs have been found to
have substantially better virtual screening power than classical SFs, before [4,5,21] and after [22–26]
the cited study. In fact, when appropriate care is taken to tailor RF-Score for virtual screening, even a
machine-learning SF with ultra-simple features (RF-Score-VS with v1 features) outperforms a range of
classical SFs in terms of enrichment [26].
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4. Materials and Methods

The protein–ligand complexes used in this study were the same as those in Li and Yang’s study [9],
which were retrieved from the PDBbind v2007 refined set. The 195 diverse complexes in the core
set were reserved for testing, and the rest 1105 complexes were subdivided into multiple nested
training sets according to their pairwise structural and sequence similarity cutoffs. With such similarity
matrices, we first confirmed the number of training samples given a certain cutoff was identical
to the value listed in [9]. The smallest cutoff was 0.4 for structural similarity (corresponding to a
training set of 116 complexes) and 0.3 for sequence similarity (corresponding to a training set of
181 complexes) in [9]. To see how the performance of the considered SFs varied when trained on
fewer complexes, we added two new cutoffs of 0.35 and 0.3 for structural similarity (resulting in new
training sets of just 43 and 9 complexes) and two new cutoffs of 0.25 and 0.2 for sequence similarity
(resulting in new training sets of just 56 and 14 complexes). For X-Score, the four pre-calculated
energy terms were obtained from Li and Yang. Rp values calculated by us were compared to their
values listed in [9] and found to be identical (linear regression is a deterministic procedure). For the
three machine-learning SFs, RF::X-Score retained the same four features (energy terms) as X-Score,
RF-Score [1] used 36 intermolecular atomic distance counts as descriptors, and RF-Score-v3 [11] added
six more descriptors from AutoDock Vina. Since these machine-learning SFs are stochastic, for each
cutoff we built 10 instances and reported the average performance in Figures 1 and 2. Instead of the
cutoff values used by Li and Yang in the horizontal axis of their plots (Figure 2b), we used the number
of training samples to evidence that machine-learning SFs only required a small part of the full training
set to outperform X-Score (Figure 2a). The table listing the test set performance of SFs can be found at
Supplementary Materials.

5. Conclusions

Unlike X-Score, the predictive performance of both versions of RF-Score improves when the
complexes with most similar proteins to those in the test set are included in the training set.
It is this capability that is actually necessary for real-world applications. The scoring power of
machine-learning SFs has already been demonstrated in other studies to increase with larger training
sets, which inevitably contain proteins with any degree of similarity to those in the test set. We have
shown that machine-learning SFs do not only learn from complexes containing proteins with high global
similarity. Hence, there is no support for the claim that the outstanding scoring power of RF-Score is
exclusively due to a high number of globally similar proteins. On the other hand, the mathematical
relationship between the atomic-level interactions and the binding affinities of the protein–ligand
complexes is strongly nonlinear. Machine-learning algorithms are therefore expected to excel at this
problem, and significant improvement has been seen after classical linear SFs, such as AutoDock
Vina [11] and Cyscore [13], were modified to use random forest regression.

From a wider perspective, we think that this research topic would be better served by a
non-competitive approach instead of the current machine-learning versus classical SFs trenches.
As different targets are likely to be better predicted by different SFs, work intended to identify
optimal SFs for each target and understand the reasons for such preferences is expected to be much
more fruitful.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/8/1/12/s1,
Table S1: test set performance of the scoring functions.
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