G. W. Hart and G. W. Hart, Topography and polypeptide distribution of terminal N-6 acetylglucosamine residues on the surfaces of intact lymphocytes, Transcription and Cellular Metabolism. Front Endocrinol

, J. Biol. Chem, vol.259, issue.5, pp.3308-3317, 1984.

P. S. Banerjee, J. Ma, and G. W. Hart, Diabetes-associated dysregulation of O-GlcNAcylation in rat 9 cardiac mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.112, issue.19, pp.6050-6055, 2015.

S. Hardiville and G. W. Hart, Nutrient regulation of signaling, transcription, and cell physiology by 11 O-GlcNAcylation, Cell Metab, vol.20, issue.2, pp.208-213, 2014.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked beta-N-acetylglucosamine on 13 nucleocytoplasmic proteins, Nature, vol.446, issue.7139, pp.1017-1022, 2007.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation 15 and phosphorylation: roles in signaling, transcription, and chronic disease, Annu. Rev. Biochem, vol.16, pp.825-858, 2011.

K. R. Harwood and J. A. Hanover, Nutrient-driven O-GlcNAc cycling -think globally but act locally

, J. Cell Sci, vol.127, pp.1857-1867, 2014.

M. R. Bond and J. A. Hanover, A little sugar goes a long way: the cell biology of O-GlcNAc, J Cell, issue.7, pp.869-880, 0208.

G. W. Hart and Y. Akimoto, The O-GlcNAc modification, Essentials of Glycobiology, vol.22, 2009.

, p Cold Spring Harbor

Y. X. Chen, J. T. Du, L. X. Zhou, X. H. Liu, Y. F. Zhao et al., , p.24

I. Nishikawa, Y. Nakajima, M. Ito, S. Fukuchi, K. Homma et al., Computational 27 prediction of O-linked glycosylation sites that preferentially map on intrinsically disordered regions 28 of extracellular proteins, GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N 25 terminus of murine estrogen receptor beta, vol.13, pp.4991-5008, 2006.

H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker et al., , p.30

Z. , Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins 31 with long disordered regions, J. Proteome. Res, vol.6, issue.5, pp.1882-1898, 2007.

H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker et al.,

N. , Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and 34 diseases associated with intrinsically disordered proteins, J. Proteome. Res, vol.6, issue.5, pp.1917-1932, 2007.

W. H. Yang, J. E. Kim, H. W. Nam, J. W. Ju, H. S. Kim et al., Modification of 36 p53 with O-linked N-acetylglucosamine regulates p53 activity and stability, Nat. Cell Biol, vol.8, issue.10, pp.1074-1083, 2006.
DOI : 10.1038/ncb1470

M. B. Lazarus, Y. Nam, J. Jiang, P. Sliz, and S. Walker, Structure of human O-GlcNAc transferase 39 and its complex with a peptide substrate, Nature, vol.469, issue.7331, pp.564-567, 2011.

Q. Zeidan and G. W. Hart, The intersections between O-GlcNAcylation and phosphorylation: 41 implications for multiple signaling pathways, J. Cell Sci, vol.123, pp.13-22, 2010.

P. Hu, S. Shimoji, and G. W. Hart, Site-specific interplay between O-GlcNAcylation and 43 phosphorylation in cellular regulation, FEBS Lett, vol.584, issue.12, pp.2526-2538, 2010.
DOI : 10.1016/j.febslet.2010.04.044

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/j.febslet.2010.04.044

J. Ma and G. W. Hart, O-GlcNAc profiling: from proteins to proteomes, Clin. Proteomics, vol.11, issue.1, 2014.

H. Hahne and B. Kuster, A novel two-stage tandem mass spectrometry approach and scoring scheme 47 for the identification of O-GlcNAc modified peptides, J. Am. Soc. Mass Spectrom, vol.22, issue.5, pp.48-931, 2011.

E. Mirgorodskaya, P. Roepstorff, and R. A. Zubarev, Localization of O-glycosylation sites in peptides 50 by electron capture dissociation in a Fourier transform mass spectrometer, Anal. Chem, vol.71, issue.20, pp.4431-4436, 1999.

K. Vosseller, J. C. Trinidad, R. J. Chalkley, C. G. Specht, A. Thalhammer et al., Snedecor, 53 analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase 1 subunit distribution, Mol. Cell Proteomics, vol.9, issue.3, pp.497-509, 2010.

M. Brosch, L. Yu, T. Hubbard, and J. Choudhary, Accurate and sensitive peptide identification with 3 Mascot Percolator, J Proteome Res, vol.8, issue.6, pp.3176-81, 2009.
DOI : 10.1021/pr800982s

URL : https://pubs.acs.org/doi/pdf/10.1021/pr800982s

J. A. Vizcaino, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al.,

Y. Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang et al., update of the 6 PRIDE database and its related tools, Nucleic Acids Res, vol.44, issue.22, p.11033, 2016.

F. Pont and J. J. Fournie, Sorting protein lists with nwCompare: a simple and fast algorithm for n-way 8 comparison of proteomic data files, Proteomics, vol.10, issue.5, pp.1091-1095, 2010.

P. D. Thomas, M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., , vol.10

A. Muruganujan and A. Narechania, PANTHER: a library of protein families and subfamilies indexed 11 by function, Genome Res, vol.13, issue.9, pp.2129-2170, 2003.

P. D. Thomas, A. Kejariwal, M. J. Campbell, H. Mi, K. Diemer et al.,

B. Lazareva, A. Muruganujan, S. Rabkin, J. A. Vandergriff, and O. Doremieux, PANTHER: a 14 browsable database of gene products organized by biological function, using curated protein family 15 and subfamily classification, Nucleic Acids Res, vol.31, issue.1, pp.334-375, 2003.

H. Mi, N. Guo, A. Kejariwal, and P. D. Thomas, PANTHER version 6: protein sequence and function 17 evolution data with expanded representation of biological pathways, Nucleic Acids Res, vol.35, pp.247-52, 2007.

J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., , vol.21

A. Campos, R. J. Chalkley, H. J. Kraus, J. P. Albar, S. Martinez-bartolome et al., , vol.22

G. S. Omenn, L. Martens, A. R. Jones, and H. Hermjakob, ProteomeXchange provides globally 23 coordinated proteomics data submission and dissemination, Nat Biotechnol, vol.32, issue.3, pp.223-229, 2014.

H. Mi, A. Muruganujan, J. T. Casagrande, and P. D. Thomas, Large-scale gene function analysis with 25 the PANTHER classification system, Nat Protoc, issue.8, pp.1551-66, 2013.

H. Mi, S. Poudel, A. Muruganujan, J. T. Casagrande, P. D. Thomas et al., Multiplexed 30 Detection of O-GlcNAcome, Phosphoproteome, and Whole Proteome within the Same Gel, Nucleic Acids Res, vol.44, issue.D1, pp.28-336, 2016.

D. Paulin and Z. Li, Desmin: a major intermediate filament protein essential for the structural 33 integrity and function of muscle, Exp. Cell Res, vol.301, issue.1, pp.1-7, 2004.

T. Heimburg, J. Schuenemann, K. Weber, and N. Geisler, Specific recognition of coiled coils by 35 infrared spectroscopy: analysis of the three structural domains of type III intermediate filament 36 proteins, Biochemistry, vol.35, issue.5, pp.1375-82, 1996.

K. Hnia, C. Ramspacher, J. Vermot, J. Laporte, B. Goudeau et al., Desmin in muscle and associated diseases: 38 beyond the structural function, Cell Tissue Res, vol.39, issue.70, 2014.

C. Clarke, J. L. Holton, B. Eymard, H. A. Katus, M. Fardeau et al., , p.41

H. Herrmann, Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal 42 myopathies, Hum Mutat, vol.28, issue.4, pp.374-86, 2007.

V. Krishnamoorthy, A. J. Donofrio, and J. L. Martin, O-GlcNAcylation of alphaB-crystallin regulates 44 its stress-induced translocation and cytoprotection, Mol Cell Biochem, vol.379, issue.1-2, pp.59-68, 2013.

J. L. Elliott, P. M. Der, A. R. Prescott, K. A. Jansen, G. H. Koenderink et al., The 46 specificity of the interaction between alphaB-crystallin and desmin filaments and its impact on 47 filament aggregation and cell viability, Philos. Trans. R. Soc. Lond B Biol. Sci, vol.368, p.20120375, 1617.

I. D. Nicholl and R. A. Quinlan, Chaperone activity of alpha-crystallins modulates intermediate 50 filament assembly, EMBO J, vol.13, issue.4, pp.945-53, 1994.

M. L. Costa, R. Escaleira, A. Cataldo, F. Oliveira, and C. S. Mermelstein, Desmin: molecular 52 interactions and putative functions of the muscle intermediate filament protein. Braz, J Med. Biol, vol.53, issue.12, pp.1819-1830, 2004.

M. D. Perng, L. Cairns, I. J. Van-den, A. Prescott, A. M. Hutcheson et al., , p.55

, Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin, J. Cell Sci, vol.1, pp.2099-2112, 1999.

S. A. Houck, A. Landsbury, J. I. Clark, and R. A. Quinlan, Multiple sites in alphaB-crystallin 3 modulate its interactions with desmin filaments assembled in vitro, PLoS. One, vol.6, issue.11, p.25859, 2011.

A. P. Arrigo, S. Simon, B. Gibert, C. Kretz-remy, M. Nivon et al., , p.6

M. Diaz-latoud, C. Vicart, and P. , Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic 7 targets, FEBS Lett, vol.581, issue.19, pp.3665-3674, 2007.

V. Arndt, N. Dick, R. Tawo, M. Dreiseidler, D. Wenzel et al., Chaperone-assisted selective autophagy is 10 essential for muscle maintenance, Curr Biol, vol.9, issue.2, pp.143-151, 2010.

A. Ulbricht, F. J. Eppler, V. E. Tapia, P. F. Van-der-ven, N. Hampe et al., , vol.12

D. Stadel, A. Haas, P. Saftig, C. Behrends, D. O. Furst et al., Cellular mechanotransduction relies on tension-induced and chaperone-assisted 14 autophagy, Curr Biol, issue.23, pp.430-435, 2013.

A. Rosati, V. Graziano, V. De-laurenzi, M. Pascale, and M. C. Turco, BAG3: a multifaceted protein 16 that regulates major cell pathways, Cell Death Dis, 2011.

L. Tskhovrebova and J. Trinick, Roles of titin in the structure and elasticity of the sarcomere, J, vol.18

. Biomed and . Biotechnol, , p.612482, 2010.

A. Kontrogianni-konstantopoulos, M. A. Ackermann, A. L. Bowman, S. V. Yap, and R. J. Bloch, 20 Muscle giants: molecular scaffolds in sarcomerogenesis, Physiol Rev, vol.89, issue.4, pp.1217-1267, 2009.

J. E. Bouameur, B. Favre, L. Fontao, P. Lingasamy, N. Begre et al., Interaction of 22 plectin with keratins 5 and 14: dependence on several plectin domains and keratin quaternary 23 structure, J Invest Dermatol, vol.134, issue.11, pp.2776-2783, 2014.

J. E. Bouameur, Y. Schneider, N. Begre, R. P. Hobbs, P. Lingasamy et al., , vol.25

B. Favre and L. Borradori, Phosphorylation of serine 4,642 in the C-terminus of plectin by MNK2 26 and PKA modulates its interaction with intermediate filaments, J Cell Sci, vol.126, pp.4195-4222, 2013.

B. Favre, Y. Schneider, P. Lingasamy, J. E. Bouameur, N. Begre et al.,

M. F. Champliaud, M. A. Frias, L. Borradori, and L. Fontao, Plectin interacts with the rod domain of 30 type III intermediate filament proteins desmin and vimentin, Eur J Cell Biol, vol.90, issue.5, pp.390-400, 2011.