A. Diniz, J. Coulthurst, and S. J. , Intraspecies Competition in Serratia 567 marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-568, 2015.

, Associated Accessory Protein. J. Bacteriol, vol.197, pp.2350-2360

L. P. Allsopp, T. E. Wood, S. A. Howard, F. Maggiorelli, L. M. Nolan et al., RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems 571 in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A, vol.114, p.570, 2017.

M. Basler, Type VI secretion system: secretion by a contractile nanomachine, 2015.

, Trans. R. Soc. Lond., B, Biol. Sci, vol.370

J. Benz and A. Meinhart, Antibacterial effector/immunity systems: it's just the tip of 579 the iceberg, Curr. Opin. Microbiol, vol.17, pp.1-10, 2014.

S. Bleves, Game of Trans-Kingdom Effectors, Trends Microbiol, vol.24, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01766104

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein 583 secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int. J, vol.584, 2010.

. Med, , vol.300, pp.534-543

D. D. Bondage, J. Lin, L. Ma, C. Kuo, and E. Lai, VgrG C terminus 586 confers the type VI effector transport specificity and is required for binding with PAAR 587 and adaptor-effector complex, Proc. Natl. Acad. Sci. U.S.A, vol.113, 2016.

B. J. Burkinshaw, X. Liang, M. Wong, A. N. Le, L. Lam et al., A type 590 VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-591 co-chaperone complex, Nat Microbiol, vol.3, pp.632-640, 2018.

Z. Cao, M. G. Casabona, H. Kneuper, J. D. Chalmers, and T. Palmer, The type VII 593 secretion system of Staphylococcus aureus secretes a nuclease toxin that targets 594 competitor bacteria, Nat Microbiol, vol.2, p.16183, 2016.

F. R. Cianfanelli, J. Diniz, M. Guo, V. De-cesare, M. Trost et al., VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI 597 Secretion System, PLoS Pathog, vol.596, 2016.

F. R. Cianfanelli, L. Monlezun, and S. J. Coulthurst, Aim, Load, Fire: The Type VI 599 Secretion System, a Bacterial Nanoweapon, Trends Microbiol, vol.24, pp.51-62, 2016.

T. G. Dong, B. T. Ho, D. R. Yoder-himes, and J. J. Mekalanos, Identification of T6SS-602 dependent effector and immunity proteins by Tn-seq in Vibrio cholerae, Proc. Natl, 2013.

, , pp.2623-2628

N. Flaugnatti, T. T. Le, S. Canaan, M. Aschtgen, V. S. Nguyen et al., , 2016.

, A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the 606 C-terminal domain of the VgrG spike protein for delivery, Mol. Microbiol, vol.99, pp.1099-607

A. L. Hecht, B. W. Casterline, Z. M. Earley, Y. A. Goo, D. R. Goodlett et al., , p.609

J. Wardenburg, Strain competition restricts colonization of an enteric pathogen 610 and prevents colitis, EMBO Rep, vol.17, pp.1281-1291, 2016.

R. D. Hood, P. Singh, F. Hsu, T. Güvener, M. A. Carl et al., A 612 type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria, Cell 613 Host Microbe, vol.7, pp.25-37, 2010.

H. Hu, H. Zhang, Z. Gao, D. Wang, G. Liu et al., Structure of the type VI 615 secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane 616 targeting, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.2175-2185, 2014.

B. Ize, V. Viarre, and R. Voulhoux, Cell fractionation, Methods Mol. Biol, vol.1149, p.191, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458202

J. Jeong, H. Yim, J. Ryu, H. S. Lee, J. Lee et al., One-step 621 sequence-and ligation-independent cloning as a rapid and versatile cloning method for 622 functional genomics studies, Appl. Environ. Microbiol, vol.78, pp.5440-5443, 2012.
DOI : 10.1128/aem.00844-12

URL : https://aem.asm.org/content/78/15/5440.full.pdf

F. Jiang, X. Wang, B. Wang, L. Chen, Z. Zhao et al., The 625 Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host 626 Autophagy by Activating Endoplasmic Reticulum Stress, Cell Rep, vol.16, pp.1502-1509, 2016.
DOI : 10.1016/j.celrep.2016.07.012

URL : https://doi.org/10.1016/j.celrep.2016.07.012

F. Jiang, N. R. Waterfield, J. Yang, G. Yang, J. et al., A Pseudomonas aeruginosa 629 type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells, 2014.
DOI : 10.1016/j.chom.2014.04.010

URL : https://doi.org/10.1016/j.chom.2014.04.010

, Cell Host Microbe, vol.15, pp.600-610

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system 632 based on a reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.5752-5756, 1998.
DOI : 10.1073/pnas.95.10.5752

URL : http://europepmc.org/articles/pmc20451?pdf=render

A. S. Kolaskar and B. V. Reddy, A method to locate protein coding sequences in DNA 635 of prokaryotic systems, Nucleic Acids Res, vol.13, pp.185-194, 1985.

K. D. Lacourse, S. B. Peterson, H. D. Kulasekara, M. C. Radey, J. Kim et al., Conditional toxicity and synergy drive diversity among antibacterial effectors, vol.637, 2018.

, Nat Microbiol, vol.3, pp.440-446

X. Liang, R. Moore, M. Wilton, M. J. Wong, L. Lam et al., , 2015.

, Identification of divergent type VI secretion effectors using a conserved chaperone 641 domain, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.9106-9111

D. Lu, Y. Zheng, N. Liao, L. Wei, B. Xu et al., The structural basis of the, p.643, 2014.

, Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas 644 aeruginosa, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.3233-3243

D. L. Macintyre, S. T. Miyata, M. Kitaoka, and S. Pukatzki, The Vibrio cholerae type 647 VI secretion system displays antimicrobial properties, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.19520-19524, 2010.

G. Mariano, L. Monlezun, and S. J. Coulthurst, Dual Role for DsbA in Attacking and 650 Targeted Bacterial Cells during Type VI Secretion System-Mediated Competition, Cell, vol.651, pp.774-785, 2018.
DOI : 10.1016/j.celrep.2017.12.075

URL : https://doi.org/10.1016/j.celrep.2017.12.075

S. T. Miyata, D. Unterweger, S. P. Rudko, and S. Pukatzki, Dual expression profile of 653 type VI secretion system immunity genes protects pandemic Vibrio cholerae, PLoS, vol.654, issue.9, 2013.
DOI : 10.1371/journal.ppat.1003752

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1003752&type=printable

J. D. Mougous, M. E. Cuff, S. Raunser, A. Shen, M. Zhou et al., A 656 virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus, Science, vol.657, 2006.

C. Neyt and G. R. Cornelis, Role of SycD, the chaperone of the Yersinia Yop 659 translocators YopB and YopD, Mol. Microbiol, vol.31, pp.143-156, 1999.

H. Nielsen, Predicting Secretory Proteins with SignalP, Protein Function 661 Prediction, 2017.
DOI : 10.1007/978-1-4939-7015-5_6

URL : http://orbit.dtu.dk/ws/files/131964644/Predicting_secretory_proteins_with_SignalP_revised_2_no_title_page_.pdf

S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, Type VI 664 secretion system translocates a phage tail spike-like protein into target cells where it 665 cross-links actin, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15508-15513, 2007.

S. Pukatzki, A. T. Ma, D. Sturtevant, B. Krastins, D. Sarracino et al., , 2006.

, Identification of a conserved bacterial protein secretion system in Vibrio cholerae using 669 the Dictyostelium host model system, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.1528-1533

A. B. Russell, M. Leroux, K. Hathazi, D. M. Agnello, T. Ishikawa et al., Diverse type VI secretion phospholipases are functionally plastic antibacterial 673 effectors, Nature, vol.496, pp.508-512, 2013.

D. Salomon, L. N. Kinch, D. C. Trudgian, X. Guo, J. A. Klimko et al., , 2014.

, Marker for type VI secretion system effectors, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.9271-676

T. G. Sana, C. Baumann, A. Merdes, C. Soscia, T. Rattei et al., , 2015.

, Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is 679 Promoted by Interaction of a T6SS Effector with the Microtubule Network, MBio, vol.6, p.712

T. G. Sana, B. Berni, and S. Bleves, The T6SSs of Pseudomonas aeruginosa Strain 682 PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting, Front Cell Infect Microbiol, vol.683, issue.6, p.61, 2016.

T. G. Sana, N. Flaugnatti, K. A. Lugo, L. H. Lam, A. Jacobson et al., , 2016.

, Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in 686 the host gut, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.5044-5051

T. G. Sana, A. Hachani, I. Bucior, C. Soscia, S. Garvis et al., The second 689 type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by 690 quorum sensing and Fur and modulates internalization in epithelial cells, J. Biol. Chem, vol.691, pp.27095-27105, 2012.

M. M. Shneider, S. A. Buth, B. T. Ho, M. Basler, J. J. Mekalanos et al., , 2013.

, PAAR-repeat proteins sharpen and diversify the type VI secretion system spike, Nature, vol.694, issue.500, pp.350-353

D. Unterweger, B. Kostiuk, R. Ötjengerdes, A. Wilton, L. Diaz-satizabal et al., Chimeric adaptor proteins translocate diverse type VI secretion system effectors 697 in Vibrio cholerae, EMBO J, vol.34, pp.2198-2210, 2015.

J. C. Whitney, C. M. Beck, Y. A. Goo, A. B. Russell, B. N. Harding et al., Genetically distinct pathways guide effector export through the type VI 700 secretion system, Mol. Microbiol, vol.92, pp.529-542, 2014.

J. C. Whitney, D. Quentin, S. Sawai, M. Leroux, B. N. Harding et al., , 2015.

, An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for 703 delivery to target cells, Cell, vol.163, pp.607-619

, WHO publishes list of bacteria for which new antibiotics are urgently needed Available at: 705, 2019.

. Fig, A) Cells of P. aeruginosa 762 PAO1 tla3V5 were subjected to fractionation and immunoblotting using antibodies directed 763 against the V5 tag, XcpY and DsbA. XcpY and DsbA were used as membrane and periplasmic 764 controls respectively. T: whole cell, C: cytoplasm, Mb: total membrane, P: periplasm. The 765 annotated ATG drives the initiation of translation of, Tla3(PA0259) is a cytoplasmic protein of P. aeruginosa, vol.5

, Immunodetection of Tla3V5 with anti-V5 antibodies produced in a WT background or in strains 767 in which one of the four predicted ATG in tla3 have been substituted in ATA. The number 768 followed by a star indicates which ATG from Fig

. Atg, Tla3 is not required for Hcp2b secretion (C). Immunodetection of Hcp2b6His with anti-770

, His antibodies produced in a WT background (line 1) or in strains deleted for rsmA, vol.2, p.771

, Anti-EF-Tu is used as a lysis control. The 773 extracellular medium proteins were also stained with Coomassie-blue

, Immunodetection of Tla3V5 with anti-HV5 antibodies produced in a WT 777 background (line 1) or in strain deleted for rsmA (line 2). The strains were grown at 25°C for 778 24 h and total bacteria were separated from extracellular medium. Anti-EF-Tu is used as a lysis 779 control. The extracellular medium proteins were also stained with Coomassie-blue. (A-E) The 780 position of the proteins and the molecular mass markers, E. coli BL21(DE3)pLysS from pBB27 and pVT3 respectively. Legend as in Fig. 4. Tla3 is 776 not secreted (E)

, Fig. 6: P. aeruginosa growth competition. The P. aeruginosa prey strain (Dtli3Dtle3) was

, incubated with various P. aeruginosa attacker strains as indicated in the figure for 24 h at 37°C

, comp" stand for cis 784 complementation of the corresponding mutation with a wild-type copy inserted at the attB site 785