R. F. Service, Solar energy. Outlook brightens for plastic solar cells, Science, vol.332, p.293, 2011.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 41), Prog. Photovolt.: Res. Appl, vol.21, p.1, 2013.

C. Guillén and J. Herrero, ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes, Sol. Energy Mater. Sol. Cells, vol.92, p.938, 2008.

M. Chakaroun, B. Lucas, B. Ratier, M. Aldissi, and . Ito/, Au/ITO multilayer electrodes for CuPc/C 60 solar cells, Energy Proced, vol.31, p.102, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00682963

K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photon, vol.6, p.808, 2012.

M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel et al., High quality transparent conductive electrodes in organic photovoltaic devices, Thin Solid Films, vol.518, p.1250, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00358577

Y. Park, H. Park, J. Jeong, H. Kim, K. Choi et al., Comparative investigation of transparent ITO/Ag/ITO and ITO/Cu/ITO electrodes grown by dual-target DC sputtering for organic photovoltaics, J. Electrochem. Soc, vol.156, p.588, 2009.

Y. Mouchaal, G. Louarn, A. Khelil, M. Morsli, N. Stephant et al.,

. Bernède, Broadening of the transmission range of dielectric/ metal multilayer structures by using different metals, Vacuum, vol.111, p.32, 2015.

H. Kermani, H. R. Fallah, and M. Hajimahmoodzadeh, Design and fabrication of nanometric ZnS/Ag/MoO 3 transparent conductive electrode and investigating the effect of annealing process on its characteristics, Physica E, vol.47, p.303, 2013.

Y. C. Han, M. S. Lim, J. H. Park, and K. C. Choi, ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO 3 anode incorporating a quasi-perfect Ag thin film, Org. Electron, vol.14, p.3437, 2013.

H. Cho, C. Yun, J. Park, and S. Yoo, Highly flexible organic light-emitting diodes based on ZnS/Ag/WO 3 multilayer transparent electrodes, Org. Electron, vol.10, p.1163, 2009.

H. Kermani, H. R. Fallah, M. Hajimahmoodzadeh, and N. Basri, Design and construction of an improved nanometric ZnS/ Ag/ZnS/Ag/ZnS transparent conductive electrode and investigating the effect of annealing on its characteristics, Thin Solid Films, vol.539, p.222, 2013.

L. Peres, A. Bou, D. Barakel, and P. Torchio, ZnS|Ag|TiO 2 multilayer electrodes with broadband transparency for thin film solar cells, RSC Adv, vol.6, p.461057, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435223

A. Bou, P. Torchio, D. Barakel, P. Thoulon, and M. Ricci, Numerical and experimental investigation of transparent and conductive TiO x /Ag/TiO x electrode, Thin Solid Films, vol.617, p.86, 2016.

S. M. Durrani, E. Khawaja, A. Al-shukri, and M. Al-kuhaili, Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates, Energy Build, vol.36, p.891, 2004.

F. Abelès, La détermination de l'indice et de l'épaisseur des couches minces transparentes, J. Phys. Radium, vol.11, p.310, 1950.

A. Bou, P. Torchio, D. Barakel, F. Thierry, P. Thoulon et al., Indium tin oxide-free transparent and conductive electrode based on SnO x | Ag | SnO x for organic solar cells, Oxide-based Materials and Devices V, Proc. SPIE 8987 (SPIE, 2014), p.898706

S. A. Dyakov, V. A. Tolmachev, E. V. Astrova, S. G. Tikhodeev, V. Y. Timoshenko et al., International Conference on Micro, p.75210, 2009.

E. Palik, Handbook of optical constants of solids, 1997.

, Sheet resistance (black curve -scale on the left) and merit figure (blue curve -scale on the right) for Glass/ZnS (35 nm)/Ag (10 nm)/TiO x (25-50 nm) ETCs

Z. Zhao and T. L. Alford, The optimal TiO 2 /Ag/TiO 2 electrode for organic solar cell application with high device-specific Haake figure of merit, Sol. Energy Mater. Sol. Cells, vol.157, p.599, 2016.

A. Bou, P. Torchio, S. Vedraine, D. Barakel, B. Lucas et al.,

P. Bernède, M. Thoulon, and . Ricci, Numerical optimization of multilayer electrodes without indium for use in organic solar cells, Sol. Energy Mater. Sol. Cells, vol.125, p.310, 2014.

G. Haacke, New figure of merit for transparent conductors, J. Appl. Phys, vol.47, p.4086, 1976.

H. Zhou, J. Xie, M. Mai, J. Wang, X. Shen et al., A high-quality AZO/Au/AZO sandwich film with ultra-low optical loss and resistivity for transparent flexible electrodes, ACS Appl. Mater. Interfaces, vol.10, p.16160, 2018.

Y. Park, V. Choong, B. R. Hsieh, and C. W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl. Phys. Lett, vol.68, p.2699, 1996.

L. Peres, A. Bou, C. Cornille, D. Barakel, and P. Torchio, Work function measurement of multilayer electrodes using Kelvin Probe Force Microscopy, J. Phys. D: Appl. Phys, vol.50, pp.13-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01694205

Z. Zhao and T. L. Alford, The optimal TiO 2 /Ag/TiO 2 electrode for organic solar cell application with high device-specific Haacke figure of merit, Sol. Energy Mater. Sol. Cells, vol.157, p.599, 2016.

M. Wang, A. Barnabé, Y. Thimont, J. Wang, Y. He et al., Optimized properties of innovative electrochromic device using ITO/Ag/ITO electrodes, Electrochim. Acta, vol.301, p.200, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359467

D. Das and L. Karmakar, Further optimization of ITO films at the melting point of Sn and configuration of Ohmic contact at the c-Si/ITO interface, Appl. Surf. Sci, 2019.

B. Sarma and B. K. Sarma, Role of residual stress and texture of ZnO nanocrystals on electro-optical properties of ZnO/Ag/ ZnO multilayer transparent conductors, J. Alloy. Compd, vol.734, p.210, 2018.

, Tailored ZnS/ Ag/TiO x transparent and conductive electrode for organic solar cells, EPJ Photovoltaics, vol.10, 2019.