C. Xu, C. Pan, Y. Liu, and Z. L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy, vol.1, issue.2, pp.259-272, 2012.

Y. Ramadass, A 330nA Charger and Battery Management IC for Solar and Thermoelectric Energy Harvesting, pp.2011-2013, 2012.

D. Purkovic, M. Honsch, and T. R. Meyer, An Energy Efficient Communication Protocol for Low Power, Energy Harvesting Sensor Modules, IEEE Sens. J, vol.19, issue.2, pp.701-714, 2019.

T. C. Hou, Y. Yang, H. Zhang, J. Chen, L. J. Chen et al., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy, Nano Energy, vol.2, issue.5, pp.856-862, 2013.

F. R. Fan, W. Tang, and Z. L. Wang, Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics, Adv. Mater, vol.28, pp.4283-4305, 2016.

F. R. Fan, Z. Q. Tian, and Z. Wang, Flexible triboelectric generator, Nano Energy, vol.1, issue.2, pp.328-334, 2012.

S. Niu and Z. L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy, vol.14, pp.161-192, 2014.

D. Weisser and R. S. Garcia, Instantaneous wind energy penetration in isolated electricity grids: Concepts and review, Renew. Energy, vol.30, issue.8, pp.1299-1308, 2005.

J. Knight, Breezing into town, Nature, vol.430, issue.6995, pp.12-13, 2004.

S. H. Krishnan, Pyroelectric-Based Solar and Wind Energy Harvesting System, ieee Trans. Sustain. energy, vol.5, issue.1, pp.73-81, 2014.

S. Li, J. Yuan, and H. Lipson, Ambient wind energy harvesting using cross-flow fluttering, J. Appl. Phys, vol.109, issue.2, pp.2-5, 2011.

C. P. and P. H. Chou, Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes, IEEE Sens. J, vol.9, issue.1, pp.168-177, 2006.

M. Perez, S. Boisseau, P. Gasnier, J. Willemin, M. Geisler et al., A cm scale electretbased electrostatic wind turbine for low-speed energy harvesting applications, Smart Mater. Struct, vol.25, issue.4, p.0, 2016.

S. Wang, X. Wang, Z. L. Wang, and Y. Yang, Efficient Scavenging of Solar and Wind Energies in a Smart City, ACS Nano, vol.10, issue.6, pp.5696-5700, 2016.

J. Ma, Y. Jie, J. Bian, T. Li, X. Cao et al., From triboelectric nanogenerator to selfpowered smart floor: a minimalist design, Nano Energy, 2017.

S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim et al., Transparent Flexible Graphene Triboelectric Nanogenerators, 2014.

, Adv. Mater, vol.26, pp.3918-3925

S. A. Nahian, R. K. Cheedarala, and K. K. Ahn, A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode, Nano Energy, vol.38, pp.447-456, 2017.

X. Wen, Y. Su, Y. Yang, H. Zhang, and Z. L. Wang, Applicability of triboelectric generator over a wide range of temperature, Nano Energy, vol.4, pp.150-156, 2014.

P. A. O'connell and G. B. Mckenna, Large deformation response of polycarbonate: Timetemperature, time-aging time, and time-strain superposition, Polym. Eng. Sci, vol.37, issue.9, pp.1485-1495, 1997.

V. Nguyen and R. Yang, Effect of humidity and pressure on the triboelectric nanogenerator, Nano Energy, vol.2, issue.5, pp.604-608, 2013.

G. Zhu, B. Peng, J. Chen, Q. Jing, and Z. Wang, Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications, Nano Energy, vol.14, pp.126-138, 2014.

G. Zhu, Z. Lin, Q. Jing, P. Bai, C. Pan et al., Nano Letters, vol.13, issue.2, pp.847-853, 2013.

S. Wang, X. Mu, X. Wang, A. Y. Gu, Z. L. Wang et al., Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy, ACS Nano, vol.9, issue.10, pp.9554-9563, 2015.

B. Dudem, D. H. Kim, and J. S. Yu, Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy, Nano Res, pp.1-13, 2017.

H. Moon, J. Chung, B. Kim, H. Yong, T. Kim et al., Stack/flutter-driven self-retracting triboelectric nanogenerator for portable electronicsNano Energy, pp.525-532, 2017.

Q. Jiang, B. Chen, K. Zhang, and Y. Yang, Ag Nanoparticle-Based Triboelectric Nanogenerator To Scavenge Wind Energy for a Self-Charging Power Unit, ACS Appl. Mater. Interfaces, vol.9, issue.50, pp.43716-43723, 2017.

X. Liu, K. Zhao, and Y. Yang, Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy, Nano Energy, vol.53, pp.622-629, 2018.

H. Yong, J. Chung, D. Choi, D. Jung, M. Cho et al., Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range, Sci. Rep, vol.6, pp.1-11, 2016.

S. Wang, L. Lin, and Z. L. Wang, Nanoscale-triboelectric-effect enabled energy conversion for sustainable powering of portable electronics, Nano Lett, vol.12, issue.12, pp.6339-6385, 2012.

R. I. Haque, P. A. Farine, and D. Briand, Soft triboelectric generators by use of cost-effective elastomers and simple casting process, Sensors Actuators, A Phys, vol.271, pp.88-95, 2018.

X. Cheng, L. Miao, Y. Song, Z. Su, H. Chen et al., High efficiency power management and charge boosting strategy for a triboelectric nanogenerator, Nano Energy, vol.38, pp.438-446, 2017.

M. Xu, L. Miao, Y. Song, Z. Su, H. Chen et al., An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment, Extrem. Mech. Lett, vol.15, pp.122-129, 2017.

H. Lin, M. He, Q. Jing, W. Yang, S. Wang et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy, Nano Energy, vol.56, pp.269-276, 2019.

Q. Jiang, B. Chen, and Y. Yang, Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy, ACS Appl. Energy Mater, vol.1, issue.8, pp.4269-4276, 2018.

H. Kim, S. J. Jung, Y. H. Han, H. Y. Lee, J. N. Kim et al., The effect of inductively coupled plasma treatment on the surface activation of polycarbonate substrate, Thin Solid Films, vol.516, p.3530, 2008.

Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li et al., Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection, ACS Nano, vol.9, issue.8, pp.8376-8383, 2015.

C. D. Chaudhari, S. A. Waghmare, and A. Kotwal, Numerical Analysis of Venturi Ducted Horizontal Axis Wind Turbine for Efficient Power Generation, Int. J. Mech. Eng. Comput. Appl, vol.1, issue.5, pp.90-93, 2013.

M. L. Jackson and W. Collins, Scale-up of a Venturi Aerator, Ind. Eng. Chem. Process Des. Dev, vol.3, issue.4, pp.386-393, 1964.

N. E. Nasr and G. G. Connor, Natural Gas Engineering and Safety Challenges: Downstream Process, Analysis, Utilization and Safety, 2014.
DOI : 10.1007/978-3-319-08948-5

C. G. Justus and A. Mikhail-school, HEIGHT VARIATION OF WIND SPEED AND WIND DISTRIBUTIONS STATISTICS, Geophys. Res. Lett, vol.3, issue.5, 1976.

. Daniel-kinseth-reitan, Accurate Determination of the Capacitance of Rectangular Parallel-Plate Capacitors, J. Appl. Phys, vol.30, issue.2, pp.172-176, 1959.

C. F. Gallo and W. L. Lama, Some charge exchange phenomena explained by a classical model of the work function, J. Electrostat, vol.2, issue.2, pp.145-150, 1976.

J. X. Zhang, Analysis on the effect of venturi tube structural parameters on fluid flow, AIP Adv, vol.7, issue.6, 2017.

Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, Triboelectric Nanogenerators-Freestanding Triboelectric-Layer Mode, 2016.

Z. L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors References

B. Dudem, D. H. Kim, and J. S. Yu, Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy, Nano Res, pp.1-13, 2017.

H. Lin, Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy, Nano Energy, vol.56, pp.269-276, 2019.

M. Xu, An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment, Extrem. Mech. Lett, vol.15, pp.122-129, 2017.

Q. Jiang, B. Chen, K. Zhang, and Y. Yang, Ag Nanoparticle-Based Triboelectric Nanogenerator To Scavenge Wind Energy for a Self-Charging Power Unit, ACS Appl. Mater. Interfaces, vol.9, issue.50, pp.43716-43723, 2017.

Q. Jiang, B. Chen, and Y. Yang, Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy, ACS Appl. Energy Mater, vol.1, issue.8, pp.4269-4276, 2018.