M. L. Pegis, C. F. Wise, D. J. Martin, and J. M. Mayer, Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts, Chem. Rev, vol.118, pp.2340-2391, 2018.
DOI : 10.1021/acs.chemrev.7b00542

N. Mano and A. De-poulpiquet,

, Enzymatic Biofuel Cells, Chem. Rev, vol.118, pp.2392-2468, 2018.

I. Mazurenko, X. Wang, A. De-poulpiquet, and E. Lojou, O2 Reduction in Enzymatic Biofuel Cells, Chem. Rev, vol.118, pp.2392-2468, 2018.

F. Melin, H. Xie, T. Meyer, Y. O. Ahn, R. B. Gennis et al., The unusual redox properties of C-type oxidases, Biochim. Biophys. ActaBioenergetics, vol.1857, pp.1892-1899, 2016.

S. Iwata, C. Ostermeier, B. Ludwig, and H. Michel, Structure at 2.8 angström resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, vol.376, pp.660-669, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01782011

C. Von-ballmoos, R. B. Gennis, P. Adelroth, and P. Brzezinski, Kinetic design of the respiratory oxidases, Proc. Natl Acad. Sci, vol.108, pp.11057-11062, 2011.

M. Wikstrom and V. Sharma, Proton pumping by cytochrome c oxidase -A 40 year anniversary, Biochim. Biophys. Acta, vol.1859, pp.692-698, 2018.

T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi et al., Structure of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 angström, Science, vol.269, pp.1069-1074, 1995.

M. Wikstrom, K. Krab, and V. Sharma, Oxygen Activation and Energy Conservation by Cytochrome c Oxidase, Chem. Rev, vol.118, pp.2469-2490, 2018.

M. Rocha, R. ;. Springett, F. J. Luo, K. Shinzawa-itoh, K. Hagimoto et al., Structure of bovine cytochrome c oxidase in the ligand-free reduced state at neutral pH, 12. Mahinthichaichan, P, vol.460, issue.11, pp.2150-2161, 2018.

R. L. Morris and T. M. Schmidt, Shallow breathing: bacterial life at low O-2, Nat. Rev. Microbiol, vol.11, pp.205-212, 2013.
DOI : 10.1038/nrmicro2970

URL : http://europepmc.org/articles/pmc3969821?pdf=render

N. Mano, R. P. Carithers, and G. Palmer, Characterization of the potentiometric behavior of soluble cytochromeoxidase by magnetic circular dichroism -Evidence in support of heme-heme interaction, Appl. Microbiol. Biotechnol, vol.96, pp.7967-7976, 1981.

S. Junemann, B. Meunier, R. B. Gennis, and P. R. Rich, Effects of mutation of the conserved lysine-362 in cytochrome c oxidase from Rhodobacter sphaeroides, Biochem, vol.36, pp.14456-14464, 1997.

W. C. Kao, T. Kleinschroth, W. Nitschke, F. Baymann, Y. Neehaul et al., The obligate respiratory supercomplex from Actinobacteria, Biochim. Biophys. Acta-Bioenergetics, pp.1705-1714, 1857.
DOI : 10.1016/j.bbabio.2016.07.009

URL : https://hal.archives-ouvertes.fr/hal-01415865

O. Maneg, B. Ludwig, and F. Malatesta, Different interaction modes of two cytochrome-c oxidase soluble Cu-A fragments with their substrates, J. Biol. Chem, vol.278, pp.46734-46740, 2003.

P. Lappalainen, R. Aasa, B. G. Malmstrom, and M. Saraste, Soluble Cu(A)-binding domain from the Paracoccus cytochrome-c-oxidase, J. Biol. Chem, vol.268, pp.26416-26421, 1993.

G. S. Sidhu and R. W. Hendler, Characterization of 2 low EM forms of cytochrome a3 and their carbonmonoxide complexes in mammalian cytochrome-coxidase, Biophys. J, vol.57, pp.1125-1140, 1990.

A. S. Haas, D. L. Pilloud, K. S. Reddy, G. T. Babcock, C. C. Moser et al., Cytochrome c and cytochrome c oxidase: Monolayer assemblies and catalysis, J. Phys. Chem. B, pp.11351-11362, 2001.

K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-pohlmeier et al., Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared absorption spectroscopy, J. Am. Chem. Soc, vol.126, pp.16199-16206, 2004.

G. Kirste, V. U. Knoll, W. Ludwig, B. Naumann, and R. L. , In situ monitoring of the catalytic activity of cytochrome c oxidase in a biomimetic architecture, Biophys. J, vol.95, pp.1500-15100, 2008.

F. Schadauer, A. F. Geiss, J. Srajer, B. Siebenhofer, P. Frank et al., Silica Nanoparticles for the Oriented Encapsulation of Membrane Proteins into Artificial Bilayer Lipid Membranes, Langmuir, vol.31, pp.2511-2516, 2015.

H. A. Hill, N. J. Walton, and I. J. Higgins, Electrochemical reduction of dioxygen using a terminal oxidase, FEBS Lett, vol.126, pp.282-284, 1981.

T. Meyer, F. Melin, H. Xie, I. Hocht, S. K. Choi et al., Evidence for Distinct Electron Transfer Processes in Terminal Oxidases from Different Origin by Means of Protein Film Voltammetry, J. Am. Chem. Soc, vol.136, pp.10854-10857, 2014.

M. Sezer, P. Kielb, U. Kuhlmann, H. Mohrmann, C. Schulz et al., A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans, J. Phys. Chem. B, vol.119, pp.25803-25811, 2008.

M. Roger, F. Biaso, C. J. Castelle, M. Bauzan, F. Chaspoul et al., Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin, Plos One, p.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01494439

X. Wang, M. Roger, R. Clement, S. Lecomte, F. Biaso et al., Electron transfer in an acidophilic bacterium: interaction between a diheme cytochrome and a cupredoxin, Chem. Sci, vol.9, pp.4879-4891, 2018.
DOI : 10.1039/c8sc01615a

URL : https://hal.archives-ouvertes.fr/hal-01793582

M. Roger, A. De-poulpiquet, A. Ciaccafava, M. Ilbert, M. Guiral et al., Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production, Anal. Bioanal. Chem, vol.406, pp.1011-1027, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01493475

W. J. Ingledew and J. G. Cobley, A potentiometric and kinetic study on the respiratory chain of ferrous iron grown Thiobacillus ferrooxidans, Biochim. Biophys. Acta, vol.590, pp.141-158, 1980.

M. Kai, T. Yano, H. Tamegai, Y. Fukumori, and T. Yamanaka, Thiobacillus ferrooxidans cytochrome c oxidase -purification and molecular and enzymatic features, J. Biochem, vol.112, pp.816-821, 1992.

G. Malarte, G. Leroy, E. Lojou, C. Abergel, M. Bruschi et al., Insight into molecular stability and physiological properties of the diheme cytochrome CYC41 from the acidophilic bacterium Acidithiobacillus ferrooxidans, Biochem, vol.44, pp.6471-6481, 2005.

A. Yarzabal, K. Duquesne, and V. Bonnefoy, Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur-and in ferrous iron media, Hydrometal, vol.71, pp.107-114, 2003.

D. R. Lovley, E. J. Phillips, P. M. De-sousa, M. L. Goncalves, L. Krippahl et al., Carbon nanofiber mesoporous films: efficient platforms for biohydrogen oxidation in biofuel cells, 37. dos Santos, vol.53, pp.1366-1378, 1987.

I. Mazurenko, K. Monsalve, J. Rouhana, P. Parent, C. Laffon et al., How the intricate interactions between carbon nanotubes and two bilirubin oxidases control direct and mediated O2 reduction, ACS Appl. Mater. Inter, vol.8, pp.23074-23085, 2016.
DOI : 10.1021/acsami.6b07355

URL : https://hal.archives-ouvertes.fr/hal-01363222

K. Monsalve and I. Mazurenko,

C. Sanchez, M. Ilbert, P. Infossi, S. Frielingsdorf, M. T. Giudici-orticoni et al., Direct electron transfer of heme-and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes, Chem. Electro. Chem, vol.3, pp.4841-4850, 1998.

R. S. Nicholson, I. Shain, P. M. De-sousa, S. R. Pauleta, D. Rodrigues et al., Benefits of membrane electrodes in the electrochemistry of metalloproteins: mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by horse cytochrome c: a case study, J. Biol. Inorg. Chem, vol.37, pp.779-787, 1965.

R. F. Weiss, A. Waterhouse, M. Bertoni, S. Bienert, G. Studer et al., Solubility of nitrogen, oxygen and argon in water and sea water. Deep-Sea Res, Nucleic Acids Research, vol.17, pp.296-303, 1970.

J. W. Gallaway and S. A. Barton, Kinetics of redox polymer-mediated enzyme electrodes, J. Am. Chem. Soc, vol.130, pp.8527-8536, 2008.
DOI : 10.1021/ja0781543

R. D. Milton, S. D. Minteer, A. V. Kalinovich, N. V. Azarkina, and T. Vygodina, Direct enzymatic bioelectrocatalysis: differentiating between myth and reality, J. Royal Soc. Inter, 2017.
DOI : 10.1098/rsif.2017.0253

URL : https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0253

V. Soulimane, T. Konstantinov, and A. A. , Peculiarities of cyanide binding to the ba (3)-type cytochrome oxidase from the thermophilic bacterium Thermus thermophilus, Biochem.-Moscow, vol.75, pp.342-352, 2010.

R. Dmello, S. Hill, R. K. Poole, A. De-poulpiquet, D. Ranava et al., The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: Implications for regulation of activity in vivo by oxygen inhibition, Chem. Electro. Chem, vol.142, pp.1724-1750, 1996.

C. C. Page, C. C. Moser, X. X. Chen, P. L. Dutton, M. Barrio et al., Natural engineering principles of electron tunnelling in biological oxidation-reduction, Curr. Op. Electrochem, vol.402, pp.135-145, 1999.

D. A. Mills, B. Schmidt, C. Hiser, E. Westley, and S. Ferguson-miller, Membrane potential-controlled inhibition of cytochrome c oxidase by zinc, J. Biol.Chem, vol.277, pp.14894-14901, 2002.

I. Mazurenko, K. Monsalve, and P. Infossi,

M. T. Orticoni, F. Topin, N. Mano, and E. Lojou, Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: a combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell, Energ. Environ. Sci, vol.10, pp.1966-1982, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587297

S. Brocato, C. Lau, P. Atanassov, L. Santos, V. Climent et al., Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction, Phys. Chem. Chem. Phys, vol.61, pp.13962-13974, 2010.

C. W. Lee, H. B. Gray, F. C. Anson, and B. G. Malmstrom, Catalysis of the reduction of dioygen at graphite electrodes coated with fungal laccase-A, J. Electroan. Chem, vol.172, pp.289-300, 1984.

M. H. Thuesen, O. Farver, B. Reinhammar, and J. Ulstrup, Cyclic voltammetry and electrocatalysis of the blue copper oxidase Polyporus versicolor laccase, Acta Chem. Scandin, vol.52, pp.555-562, 1998.

C. Immoos, M. G. Hill, D. Sanders, J. A. Fee, C. E. Slutter et al., Electrochemistry of the Cu-A domain of Thermus thermophilus cytochrome ba(3), Curr. Op. Electrochem, vol.61, issue.6, pp.110-120, 1996.

K. Pardhasaradhi, B. Ludwig, and R. W. Hendler, potentiometric and spectral studies with the 2-subunit cytochrome aa3 from Paracoccus denitrificans -comparison with the 13-subunit beef-heart enzyme, Biophys. J, vol.60, pp.408-414, 1991.

S. Monari, G. Battistuzzi, M. Borsari, G. Di-rocco, L. Martini et al., Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of SurfaceImmobilized Cytochrome c(4), J. Phys. Chem. B, vol.113, pp.13645-13653, 2009.

F. Melin, B. Schoepp-cothenet, S. Abdulkarim, M. R. Noor, T. Soulimane et al., Electrochemical study of an electron shuttle diheme protein: The cytochrome c(550) from T. thermophilus, Inorg. Chim. Acta, vol.468, pp.252-259, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01598382

S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier et al., CarbonNanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells, Angew. Chem.-Inter, vol.56, pp.1845-1849, 2017.
DOI : 10.1002/ange.201611532