L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells-Fundamentals and Applications. Fuel Cells, vol.1, pp.5-39, 2001.

J. R. Windmiller and J. Wang, Wearable Electrochemical Sensors and Biosensors: A Review, Electroanalysis, vol.25, pp.29-46, 2013.

E. Katz and K. Macvittie, Implanted Biofuel Cells Operating in vivo -Methods, Applications and Perspectives -Feature Article, Energy Environ. Sci, vol.6, pp.2791-2803, 2013.

M. Rasmussen, S. Abdellaoui, and S. D. Minteer, Enzymatic Biofuel Cells: 30 Years of Critical Advancements, Biosens. Bioelectron, vol.76, pp.91-102, 2015.

C. Barton, S. Gallaway, J. Atanassov, and P. , Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chem. Rev, vol.104, pp.4867-4886, 2004.

J. Kim, H. Jia, and P. Wang, Challenges in Biocatalysis for Enzyme-Based Biofuel Cells

. Adv, , vol.24, pp.296-308, 2006.

J. A. Cracknell, K. A. Vincent, and F. A. Armstrong, Enzymes as Working or Inspirational

S. J. Cosnier, A. Gross, A. Le-goff, and M. Holzinger, Recent Advances on Enzymatic Glucose/Oxygen and Hydrogen/Oxygen Biofuel Cells: Achievements and Limitations, J. Power Sources, vol.325, pp.252-263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01644734

S. Cosnier, A. J. Gross, F. Giroud, and M. Holzinger, Beyond the Hype Surrounding Biofuel Cells: What's the Future of Enzymatic Fuel Cells?, Curr. Opin. Electrochem, pp.148-155, 2018.

A. T. Yahiro, S. M. Lee, and D. O. Kimble, Bioelectrochemistry: I. Enzyme Utilizing Bio-Fuel Cell Studies. Biochim. Biophys. Acta, vol.88, pp.375-383, 1964.

A. Suzuki, N. Mano, and S. Tsujimura, Lowering the Potential of Electroenzymatic Glucose Oxidation on Redox Hydrogel-Modified Porous Carbon Electrode, Electrochim. Acta, vol.232, pp.581-585, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01512668

C. Agnès, B. Reuillard, A. Le-goff, M. Holzinger, and S. Cosnier, A Double-Walled Carbon Nanotube-Based Glucose/H 2 O 2 Biofuel Cell Operating under Physiological Conditions, Electrochem. Commun, vol.34, pp.105-108, 2013.

Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, Fructose/Dioxygen Biofuel Cell Based on Direct Electron Transfer-Type Bioelectrocatalysis, Phys. Chem. Chem. Phys, vol.9, pp.1793-1801, 2007.

A. Ramanavicius, A. Kausaite, and A. Ramanaviciene, Enzymatic Biofuel Cell Based on Anode and Cathode Powered by Ethanol, Biosens. Bioelectron, vol.24, pp.767-772, 2008.

K. Sakai, Y. Kitazumi, O. Shirai, K. Takagi, and K. Kano, High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis, ACS Catal, vol.7, pp.5668-5673, 2017.

H. Xia, K. So, Y. Kitazumi, O. Shirai, K. Nishikawa et al., Dual Gas-Diffusion Membrane-and Mediatorless Dihydrogen/Air-Breathing Biofuel Cell Operating at Room Temperature, J. Power Sources, vol.335, pp.105-112, 2016.

A. Kontani, M. Masuda, H. Matsumura, N. Nakamura, M. Yohda et al., Using Thermostable Alcohol Dehydrogenase for an Ethanol Biofuel Cell Operating at High Temperatures, Electroanalysis, vol.26, pp.682-686, 2014.

X. Wang, M. Roger, R. Clement, S. Lecomte, F. Biaso et al., Electron Transfer in an Acidophilic Bacterium: Interaction between a Diheme Cytochrome and a Cupredoxin, Chem. Sci, pp.4879-4891, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01793582

L. Zhang, M. Zhou, D. Wen, L. Bai, B. Lou et al., Small-Size Biofuel Cell on Paper

, Biosens. Bioelectron, vol.35, pp.155-159, 2012.

A. L. Ghindilis, P. Atanasov, and E. Wilkins, Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications, Electroanalysis, vol.9, pp.661-674, 1997.

M. Falk, Z. Blum, and S. Shleev, Direct Electron Transfer Based Enzymatic Fuel Cells, Electrochim. Acta, vol.82, pp.191-202, 2012.

A. E. Cass, G. Davis, G. D. Francis, H. A. Hill, W. J. Aston et al., Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose, Anal. Chem, vol.56, pp.667-671, 1984.

K. Kano and T. Ikeda, Fundamentals and Practices of Mediated Bioelectrocatalysis, Anal. Sci, vol.16, pp.1013-1021, 2000.

K. A. Vincent, A. Parkin, and F. A. Armstrong, Investigating and Exploiting the Electrocatalytic Properties of Hydrogenase, Chem. Rev, vol.107, pp.4366-4413, 2007.

A. Volbeda, M. Charon, C. Piras, E. C. Hatachikian, M. Frey et al.,

, Crystal Sturcture of Nickel-Iron Hydrogenase from Desulfovbrio gigas, Nature, vol.373, pp.580-587, 1995.

Y. Hibino, S. Kawai, Y. Kitazumi, O. Shirai, and K. Kano, Mutation of Heme c Axial Ligands in D-Fructose Dehydrogenase for Investigation of Electron Transfer Pathways and Reduction of Overpotential in Direct Electron Transfer-Type Bioelectrocatalysis, Electrochem. Commun, vol.67, pp.43-46, 2016.

S. Kawai, T. Yakushi, K. Matsushita, Y. Kitazumi, O. Shirai et al., The Electron Transfer Pathway in Direct Electrochemical Communication of Fructose Dehydrogenase with Electrodes, Electrochem. Commun, vol.38, pp.28-31, 2014.

Y. Kamitaka, S. Tsujimura, K. Kataoka, T. Sakurai, T. Ikeda et al., Effects of Axial Ligand Mutation of the Type I Copper Site in Bilirubin Oxidase on Direct Electron Transfer-Type Bioelectrocatalytic Reduction of Dioxygen, J. Electroanal. Chem, vol.601, pp.119-124, 2007.

S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A. I. Yaropolov et al., Direct Electron Transfer between Copper-Containing Proteins and Electrodes, Biosens. Bioelectron, vol.20, pp.2517-2554, 2005.

A. Zebda, J. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer et al., Challenges for Successful Implantation of Biofuel Cells. Bioelectrochem, vol.124, pp.57-72, 2018.

P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier et al., A Glucose Biofuel Cell Implanted in Rats, PLOS ONE, vol.5, p.10476, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00688232

S. El-ichi, A. Zebda, J. P. Alcaraz, A. Laaroussi, F. Boucher et al., Bioelectrodes Modified with Chitosan for Long-Term Energy Supply from the Body. Energy Environ. Sci, vol.8, pp.1017-1026, 2015.

K. Macvittie, J. Halamek, L. Halamkova, M. Southcott, W. D. Jemison et al., Cyborg" Lobsters to a Pacemaker Powered by Implantable Biofuel Cells, Energy Environ. Sci, vol.6, pp.81-86, 2013.

A. Zebda, S. Cosnier, J. Alcaraz, M. Holzinger, A. Le-goff et al., Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices, Sci. Rep, 1516.
URL : https://hal.archives-ouvertes.fr/hal-00809303

K. Shoji, Y. Akiyama, M. Suzuki, N. Nakamura, H. Ohno et al., Biofuel Cell Backpacked Insect and Its Application to Wireless Sensing, Biosens. Bioelectron, vol.78, pp.390-395, 2016.

A. Szczupak, J. Halamek, L. Halamkova, V. Bocharova, L. Alfonta et al., Living Battery-Biofuel Cells Operating in vivo in Clams, Energy Environ. Sci, vol.5, pp.8891-8895, 2012.

M. Rasmussen, R. E. Ritzmann, I. Lee, A. J. Pollack, and D. Scherson, An Implantable Biofuel Cell for a Live Insect, J. Am. Chem. Soc, vol.134, pp.1458-1460, 2012.

J. A. Castorena-gonzalez, C. Foote, K. Macvittie, J. Halámek, L. Halámková et al., Biofuel Cell Operating in vivo in Rat, Electroanalysis, vol.25, pp.1579-1584, 2013.

S. Cosnier, A. Le-goff, and M. Holzinger, Towards Glucose Biofuel Cells Implanted in Human Body for Powering Artificial Organs, Review. Electrochem. Commun, vol.38, pp.19-23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01652513

A. A. Babadi, S. Bagheri, and S. B. Hamid, Progress on Implantable Biofuel Cell: Nano-Carbon

B. Reuillard, A. Le-goff, C. Agnes, M. Holzinger, A. Zebda et al., High Power Enzymatic Biofuel Cell Based on Naphthoquinone-Mediated Oxidation of Glucose by Glucose Oxidase in a Carbon Nanotube 3D Matrix, Phys. Chem. Chem. Phys, vol.15, pp.4892-4896, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01652813

Z. Zhu, T. Tam, F. Sun, C. You, and Y. H. Zhang, A High-Energy-Density Sugar Biobattery Based on a Synthetic Enzymatic Pathway, Nat. Commun, vol.5, p.3026, 2014.

Z. Kang, K. Jiao, J. Cheng, R. Peng, S. Jiao et al., A Novel Three-Dimensional Carbonized PANI1600@CNTs Network for Enhanced Enzymatic Biofuel Cell, Biosens. Bioelectron, vol.101, pp.60-65, 2018.

M. Gamella, A. Koushanpour, and E. Katz, Biofuel Cells-Activation of Micro-and Macro-Electronic Devices, Bioelectrochem, vol.119, pp.33-42, 2018.

A. J. Bandodkar and J. Wang, Wearable Biofuel Cells: A Review, Electroanalysis, vol.28, pp.1188-1200, 2016.

Y. Yu, J. Zhai, Y. Xia, and S. Dong, Single Wearable Sensing Energy Device Based on Photoelectric Biofuel Cells for Simultaneous Analysis of Perspiration and Illuminance, vol.9, pp.11846-11850, 2017.

A. J. Bandodkar, Review-Wearable Biofuel Cells: Past, Present and Future, J. Electrochem. Soc, vol.164, pp.3007-3014, 2017.

W. Jia, G. Valdés-ramírez, A. J. Bandodkar, J. R. Windmiller, and J. Wang, Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration, Angew. Chem. Int. Ed, vol.52, pp.7233-7236, 2013.

W. Jia, X. Wang, S. Imani, A. J. Bandodkar, J. Ramirez et al., Wearable Textile Biofuel Cells for Powering Electronics, J. Mater. Chem. A, vol.2, pp.18184-18189, 2014.

T. Miyake, K. Haneda, S. Yoshino, M. Nishizawa, and . Flexible, Layered Biofuel Cells. Biosens. Bioelectron, vol.40, pp.45-49, 2013.

D. Desmaële, L. Renaud, S. Tingry, and . Wireless, Membraneless Enzymatic Biofuel Cells. Sens. Actuat. B: Chem, vol.220, pp.583-589, 2015.

H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda et al., A High-Power Glucose/Oxygen Biofuel Cell Operating under Quiescent Conditions, Energy Environ. Sci, vol.2, pp.133-138, 2009.

D. Majdecka, S. Draminska, D. Janusek, P. Krysinski, and R. Bilewicz, A Self-Powered Biosensing Device with an Integrated Hybrid Biofuel Cell for Intermittent Monitoring of Analytes, Biosens. Bioelectron, vol.102, pp.383-388, 2018.

A. J. Bandodkar, J. You, N. Kim, Y. Gu, R. Kumar et al., Stretchable, High Power Density Electronic Skin-Based Biofuel Cells for Scavenging Energy from Human Sweat, vol.10, pp.1581-1589, 2017.

Z. Zhu, T. Tam, and Y. H. Zhang, Fundamentals and Application of New Bioproduction Systems

A. Zeng, , vol.137, 2013.

D. Sokic-lazic, R. L. Arechederra, B. L. Treu, and S. D. Minteer, Oxidation of Biofuels: Fuel Diversity and Effectiveness of Fuel Oxidation through Multiple Enzyme Cascades, Electroanalysis, vol.22, pp.757-764, 2010.

P. Pinyou, F. Conzuelo, K. Sliozberg, J. Vivekananthan, A. Contin et al., , vol.99

W. Schuhmann, Coupling of an Enzymatic Biofuel Cell to an Electrochemical Cell for Self-Powered Glucose Sensing with Optical Readout, Bioelectrochem, vol.106, pp.22-27, 2015.

G. Merle, L. Brunel, S. Tingry, M. Cretin, M. Rolland et al., Electrode Biomaterials Based on Immobilized Laccase. Application for Enzymatic Reduction of Dioxygen, Mater. Sci. Eng. C, vol.28, pp.932-938, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00362210

A. Zebda, C. Gondran, A. Le-goff, M. Holzinger, P. Cinquin et al., Mediatorless High-Power Glucose Biofuel Cells Based on Compressed Carbon Nanotube-Enzyme Electrodes, Nat. Commun, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00685244

S. Q. Shleev and . Vadis, , vol.82, pp.522-539, 2017.

Y. Tokita, T. Nakagawa, H. Sakai, T. Sugiyama, R. Matsumoto et al., Sony's Biofuel Cell, ECS Trans, vol.13, pp.89-97, 2008.

C. H. Kwon, S. Lee, Y. Choi, J. A. Lee, S. H. Kim et al., High-Power Biofuel Cell Textiles from Woven Biscrolled Carbon Nanotube Yarns, Nat. Commun, vol.5, p.3928, 2014.

S. Fujita, S. Yamanoi, K. Murata, H. Mita, T. Samukawa et al., A Repeatedly Refuelable Mediated Biofuel Cell Based on a Hierarchical Porous Carbon Electrode. Sci. Rep, vol.4, p.4937, 2014.

A. Neto, S. Hickey, D. P. Milton, R. D. De-andrade, A. R. Minteer et al., High Current Density PQQ-Dependent Alcohol and Aldehyde Dehydrogenase Bioanodes, Biosens. Bioelectron, vol.72, pp.247-254, 2015.

A. De-poulpiquet, A. Ciaccafava, R. Gadiou, S. Gounel, M. T. Giudici-orticoni et al., Design of a H 2 /O 2 Biofuel Cell Based on Thermostable Enzymes, Electrochem. Commun, vol.42, pp.72-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00961067

L. Xu and F. A. Armstrong, Optimizing the Power of Enzyme-Based Membrane-Less Hydrogen Fuel Cells for Hydrogen-Rich H 2 -Air Mixtures, Energy Environ. Sci, vol.6, pp.2166-2171, 2013.

I. Mazurenko, K. Monsalve, P. Infossi, M. Giudici-orticoni, F. Topin et al., Impact of Substrate Diffusion and Enzyme Distribution in 3D-Porous Electrodes: A Combined Electrochemical and Modelling Study of a Thermostable H 2 /O 2 Enzymatic Fuel Cell
URL : https://hal.archives-ouvertes.fr/hal-01587297

P. Gai, Y. Ji, Y. Chen, C. Zhu, J. Zhang et al., A Nitrogen-Doped Graphene/Gold Nanoparticle/Formate Dehydrogenase Bioanode for High Power Output Membrane-Less Formic Acid/O 2 Biofuel Cells, Analyst, vol.140, pp.1822-1826, 2015.

Y. Handa, K. Yamagiwa, Y. Ikeda, Y. Yanagisawa, S. Watanabe et al., Fabrication of Carbon-Felt-Based Multi-Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells, ChemPhysChem, vol.15, pp.2145-2151, 2014.

L. Deng, L. Shang, D. Wen, J. Zhai, S. Dong et al., Biofuel Cell Powered by Ethanol and Alcoholic Beverage, Biosens. Bioelectron, vol.26, pp.70-73, 2010.

D. Selloum, S. Tingry, V. Techer, L. Renaud, C. Innocent et al., Optimized Electrode Arrangement and Activation of Bioelectrodes Activity by Carbon Nanoparticles for Efficient Ethanol Microfluidic Biofuel Cells, J. Power Sources, vol.269, pp.834-840, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01489905

J. Masa and W. Schuhmann, Electrocatalysis and Bioelectrocatalysis -Distinction without a Difference, Nano Energy, vol.29, pp.466-475, 2016.

P. O. Saboe, E. Conte, M. Farell, G. C. Bazan, and M. Kumar, Biomimetic and Bioinspired Approaches for Wiring Enzymes to Electrode Interfaces, Energy Environ. Sci, vol.10, pp.14-41, 2016.

M. J. Moehlenbrock and S. D. Minteer, Extended Lifetime Biofuel Cells, Chem. Soc. Rev, vol.37, pp.1188-1196, 2008.

R. A. Luz, A. R. Pereira, J. C. De-souza, F. C. Sales, and F. N. Crespilho, Enzyme Biofuel Cells: Thermodynamics, Kinetics and Challenges in Applicability. ChemElectroChem, vol.1, pp.1751-1777, 2014.

A. R. Pereira, J. C. De-souza, R. M. Iost, F. C. Sales, and F. N. Crespilho, Application of Carbon Fibers to Flexible Enzyme Electrodes, J. Electroanal. Chem, vol.780, pp.396-406, 2016.

M. J. Cooney, V. Svoboda, C. Lau, G. Martin, and S. D. Minteer, Enzyme Catalysed Biofuel Cells. Energy Environ. Sci, vol.1, pp.320-337, 2008.

S. Ha, Y. Wee, and J. Kim, Nanobiocatalysis for Enzymatic Biofuel Cells, Top. Catal, vol.55, pp.1181-1200, 2012.

D. Leech, P. Kavanagh, and W. Schuhmann, Enzymatic Fuel Cells: Recent Progress, Electrochim. Acta, vol.84, pp.223-234, 2012.

M. Zhou and J. Wang, Biofuel Cells for Self-Powered Electrochemical Biosensing and Logic Biosensing: A Review, Carbon, vol.24, pp.197-209, 2012.

M. Zhou, Recent Progress on the Development of Biofuel Cells for Self-Powered Electrochemical Biosensing and Logic Biosensing: A Review, Electroanalysis, vol.27, pp.1786-1810, 2015.

C. Zhao, P. Gai, R. Song, Y. Chen, J. Zhang et al., Nanostructured Material-Based Biofuel Cells: Recent Advances and Future Prospects, Chem. Soc. Rev, vol.46, pp.1545-1564, 2017.

I. Mazurenko, X. Wang, A. De-poulpiquet, and E. Lojou, H 2 /O 2 Enzymatic Fuel Cells: From Proof-of-Concept to Powerful Devices, Sustainable Energy Fuels, vol.1, pp.1475-1501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552073

S. Cosnier, M. Holzinger, and A. Le-goff, Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells, Front. Bioeng. Biotechnol, vol.2, p.45, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01652360

A. De-poulpiquet, A. Ciaccafava, and E. Lojou, New Trends in Enzyme Immobilization at Nanostructured Interfaces for Efficient Electrocatalysis in Biofuel Cells, Electrochim. Acta, vol.126, pp.104-114, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01493465

Y. Holade, S. Tingry, K. Servat, T. Napporn, and D. Cornu,

M. T. Meredith, M. Minson, D. Hickey, K. Artyushkova, D. T. Glatzhofer et al.,

, Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction, ACS Catal, vol.1, pp.1683-1690, 2011.

L. Xu and F. A. Armstrong, Pushing the Limits for Enzyme-Based Membrane-Less Hydrogen Fuel Cells -Achieving Useful Power and Stability, RSC Adv, vol.5, pp.3649-3656, 2015.

M. Kizling, M. Dzwonek, B. Olszewski, P. B?cal, ?. Tymecki et al.,

K. Stolarczyk and R. Bilewicz, Reticulated Vitreous Carbon as a Scaffold for Enzymatic Fuel Cell Designing, Biosens. Bioelectron, vol.95, pp.1-7, 2017.

D. M. Fadzillah, S. K. Kamarudin, M. A. Zainoodin, and M. S. Masdar, Critical Challenges in the System Development of Direct Alcohol Fuel Cells as Portable Power Supplies: An Overview, Int. J. Hydrogen Energy, vol.44, pp.3031-3054, 2019.

A. J. Gross, X. Chen, F. Giroud, C. Abreu, A. Le-goff et al., Phenanthroline-5,6-Dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation, Buckypaper Biofuel Cell: Exploiting, vol.1, pp.4408-4416, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01616374

A. S. Campbell, Y. J. Jeong, S. M. Geier, R. R. Koepsel, A. J. Russell et al.,

, Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes, vol.7, pp.4056-4065, 2015.

B. B. Shao, Z. F. Liu, G. M. Zeng, Y. Liu, X. Yang et al.,

Y. L. Jiang and M. Yan, Immobilization of Laccase on Hollow Mesoporous Carbon Nanospheres: Noteworthy Immobilization, Excellent Stability and Efficacious for Antibiotic Contaminants Removal

, J. Hazard. Mater, vol.362, pp.318-326, 2019.

S. Sadeghi, E. Fooladi, and M. Malekaneh, A New Amperometric Biosensor Based on

, Fe 3 O 4 /Polyaniline/Laccase/Chitosan Biocomposite-Modified Carbon Paste Electrode for Determination of Catechol in Tea Leaves, Appl. Biochem. Biotechnol, vol.175, pp.1603-1616, 2015.

T. Itoh, Y. Shibuya, A. Yamaguchi, Y. Hoshikawa, O. Tanaike et al.,

C. Gutiérrez-sánchez, M. Pita, C. Vaz-domínguez, S. Shleev, and A. L. De-lacey, Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, J. Am. Chem. Soc, vol.134, pp.17212-17220, 2012.

E. I. Solomon, A. J. Augustine, and J. Yoon,

, Dalton Trans, vol.0, pp.3921-3932, 2008.

L. Quintanar, C. Stoj, A. B. Taylor, P. J. Hart, D. J. Kosman et al., Shall We Dance? How A Multicopper Oxidase Chooses Its Electron Transfer Partner, Acc. Chem. Res, vol.40, pp.445-452, 2007.

T. Sakurai and K. Kataoka, Basic and Applied Features of Multicopper Oxidases, CueO, Bilirubin Oxidase, and Laccase, Chem. Rec, vol.7, pp.220-229, 2007.

C. Gutierrez-sanchez, A. Ciaccafava, P. Y. Blanchard, K. Monsalve, and M. Giudici-orticoni,

T. Lecomte, S. Lojou, and E. , Efficiency of Enzymatic O 2 Reduction by Myrothecium Verrucaria Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry, ACS Catal, vol.6, pp.5482-5492, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405977

A. A. Karyakin, Principles of Direct (Mediator Free) Bioelectrocatalysis

, Bioelectrochemistry, vol.88, pp.70-75, 2012.

I. Mazurenko, K. Monsalve, J. Rouhana, P. Parent, C. Laffon et al., How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O 2 Reduction, ACS Appl
URL : https://hal.archives-ouvertes.fr/hal-01363222

, Mater. Interfaces, vol.8, pp.23074-23085, 2016.

F. Oteri, A. Ciaccafava, A. D. Poulpiquet, M. Baaden, E. Lojou et al., The Weak, Fluctuating, Dipole Moment of Membrane-Bound Hydrogenase from Aquifex aeolicus Accounts for Its Adaptability to Charged Electrodes, Phys. Chem. Chem. Phys, vol.16, pp.11318-11322, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01493492

D. Pankratov, J. Sotres, A. Barrantes, T. Arnebrant, and S. Shleev, Interfacial Behavior and Activity of Laccase and Bilirubin Oxidase on Bare Gold Surfaces, Langmuir, vol.30, pp.2943-2951, 2014.

V. P. Hitaishi, I. Mazurenko, M. Harb, R. Clément, M. Taris et al.,

S. Lecomte, M. Ilbert, and A. De-poulpiquet, Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis, ACS Catal
URL : https://hal.archives-ouvertes.fr/hal-01994370

N. Heidary, T. Utesch, M. Zerball, M. Horch, D. Millo et al., Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase, PLOS ONE, vol.10, p.143101, 2015.

P. Olejnik, B. Palys, A. Kowalczyk, and A. M. Nowicka, Orientation of Laccase on Charged Surfaces. Mediatorless Oxygen Reduction on Amino-and Carboxyl-Ended Ethylphenyl Groups, J. Phys. Chem. C, vol.116, pp.25911-25918, 2012.

P. Olejnik, A. Paw?owska, and B. Pa?ys, Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for Electrocatalytic Activity Studies of Laccase Adsorbed on Modified Gold Electrodes, Electrochim. Acta, vol.110, pp.105-111, 2013.

X. Hao, J. Zhang, H. E. Christensen, H. Wang, and J. Ulstrup, Electrochemical Single-Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action, ChemPhysChem, vol.13, pp.2919-2924, 2012.

C. Gutiérrez-sánchez, D. Olea, M. Marques, V. M. Fernández, I. A. Pereira et al.,

D. Lacey and A. L. , Oriented Immobilization of a Membrane-Bound Hydrogenase onto an Electrode for Direct Electron Transfer, Langmuir, vol.27, pp.6449-6457, 2011.

Ó. Gutiérrez-sanz, P. Natale, I. Márquez, M. C. Marques, S. Zacarias et al.,

A. C. López-montero, I. De-lacey, A. L. Vélez, and M. , H 2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration, Angew. Chem. Int. Ed, vol.55, pp.6216-6220, 2016.

H. Harada, A. Onoda, T. Uchihashi, H. Watanabe, N. Sunagawa et al., Interdomain Flip-Flop Motion Visualized in Flavocytochrome Cellobiose Dehydrogenase using High-Speed Atomic Force Microscopy During Catalysis, Chem. Sci, vol.8, pp.6561-6565, 2017.

J. A. Cracknell, T. P. Mcnamara, E. D. Lowe, and C. F. Blanford, Bilirubin Oxidase from Myrothecium verrucaria: X-Ray Determination of the Complete Crystal Structure and a Rational Surface Modification for Enhanced Electrocatalytic O 2 Reduction, Dalton Trans, vol.40, pp.6668-6675, 2011.

N. Lalaoui, A. Le-goff, M. Holzinger, S. Cosnier, C. F. Blanford et al., Fully Oriented Bilirubin Oxidase on (257), A Stable Electrode for High-Potential, vol.40, pp.2146-2156, 2011.

M. Cadet, S. Gounel, C. Stines-chaumeil, X. Brilland, J. Rouhana et al.,

, An Enzymatic Glucose/O 2 Biofuel Cell Operating in Human Blood, Biosens. Bioelectron, vol.83, pp.60-67, 2016.

S. H. Van-rijt and P. J. Sadler, Current Applications and Future Potential for Bioinorganic Chemistry in the Development of Anticancer Drugs, Drug Discov. Today, vol.14, pp.1089-1097, 2009.

A. J. Gross, X. Chen, F. Giroud, C. Travelet, R. Borsali et al., Redox-Active Glyconanoparticles as Electron Shuttles for Mediated Electron Transfer with Bilirubin Oxidase in Solution, J. Am. Chem. Soc, vol.139, pp.16076-16079, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649354

J. H. Hammond, A. J. Gross, F. Giroud, C. Travelet, B. Redouane et al., Solubilized Enzymatic Fuel Cell (SEFC) for Quasi-Continuous Operation Exploiting Carbohydrate Block Copolymer Glyconanoparticle Mediators, ACS Energy Lett, vol.4, pp.142-148, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02007122

F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig et al., Highly Efficient and Versatile Anodes for Biofuel Cells Based on Cellobiose Dehydrogenase from Myriococcum thermophilum, J. Phys. Chem. C, vol.112, pp.13668-13673, 2008.

J. Hodak, R. Etchenique, E. J. Calvo, K. Singhal, and P. Bartlett, Layer-by-Layer Self-Assembly of Glucose Oxidase with a Poly(allylamine)ferrocene Redox Mediator, Langmuir, vol.13, pp.2708-2716, 1997.

V. Flexer, E. J. Calvo, and P. N. Bartlett, The Application of the Relaxation and Simplex Method to the Analysis of Data for Glucose Electrodes Based on Glucose Oxidase Immobilised in an Osmium Redox Polymer, J. Electroanal. Chem, vol.646, pp.24-32, 2010.

N. P. Godman, J. L. Deluca, S. R. Mccollum, D. W. Schmidtke, and D. T. Glatzhofer,

, Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear

. Poly, Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications, Langmuir, vol.32, pp.3541-3551, 2016.

K. Elouarzaki, D. Cheng, A. C. Fisher, and J. Lee, Coupling Orientation and Mediation

K. Murata, K. Kajiya, N. Nakamura, and H. Ohno, Direct Electrochemistry of Bilirubin Oxidase on Three-Dimensional Gold Nanoparticle Electrodes and Its Application in a Biofuel Cell, Energy Environ. Sci, vol.2, pp.1280-1285, 2009.

X. Wang, M. Falk, R. Ortiz, H. Matsumura, J. Bobacka et al., Mediatorless Sugar/Oxygen Enzymatic Fuel Cells Based on Gold Nanoparticle-Modified Electrodes, Biosens. Bioelectron, vol.31, pp.219-225, 2012.

M. Falk, M. Alcalde, P. N. Bartlett, A. L. De-lacey, L. Gorton et al.,

R. Haddad, J. Kilburn, D. Leech, and R. Ludwig, Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission, PLOS ONE, vol.9, p.109104, 2014.

K. Nishio and H. Masuda, Anodization of Gold in Oxalate Solution to Form a Nanoporous Black Film, Angew. Chem. Int. Ed, vol.50, pp.1603-1607, 2011.

R. N. Szamocki;-s.-reculusa;-s.-ravaine;-p, ;. Bartlett, ;. Kuhn, and . Hempelmann,

, Mesostructuring and Biofunctionalization of Gold for Increased Electroactivity, Angew. Chem. Int. Ed, vol.45, pp.1317-1321, 2006.

A. Karaji?, S. Reculusa, M. Heim, P. Garrigue, S. Ravaine et al.,

, Generation of Miniaturized Coaxial Double Electrodes with Tunable Porosity, vol.2, p.1500192, 2015.

S. Boland and D. Leech, A Glucose/Oxygen Enzymatic Fuel Cell Based on Redox Polymer and

, Enzyme Immobilisation at Highly-Ordered Macroporous Gold Electrodes, Analyst, vol.137, pp.113-117, 2012.

H. Du-toit and M. Di-lorenzo, Continuous Power Generation from Glucose with Two Different Miniature Flow-Through Enzymatic Biofuel Cells, Biosens. Bioelectron, vol.69, pp.199-205, 2015.

X. Xiao, H. Li, K. Zhang, and P. Si, Examining the Effects of Self-Assembled Monolayers on Nanoporous Gold Based Amperometric Glucose Biosensors, Analyst, vol.139, pp.488-494, 2014.

M. Pita, C. Gutierrez-sanchez, M. D. Toscano, S. Shleev, and A. L. De-lacey, Oxygen Biosensor Based on Bilirubin Oxidase Immobilized on a Nanostructured Gold Electrode. Bioelectrochemistry, vol.94, pp.69-74, 2013.

T. Siepenkoetter, U. Salaj-kosla, and E. Magner, The Immobilization of Fructose Dehydrogenase on Nanoporous Gold Electrodes for the Detection of Fructose, vol.4, pp.905-912, 2017.

, Enhanced Performance by Multilayer Biocatalyst Immobilized on Highly Ordered Macroporous Electrode, Biosens. Bioelectron, vol.24, pp.329-333, 2008.

L. Y. Chen, T. Fujita, and M. W. Chen, Biofunctionalized Nanoporous Gold for Electrochemical Biosensors, Electrochim. Acta, vol.67, pp.1-5, 2012.

C. Hou and A. Liu, An Integrated Device of Enzymatic Biofuel Cells and Supercapacitor for Both Efficient Electric Energy Conversion and Storage, Electrochim. Acta, vol.245, pp.303-308, 2017.

Y. Yu, Y. Han, M. Xu, L. Zhang, and S. Dong, Automatic Illumination Compensation Device Based on a Photoelectrochemical Biofuel Cell Driven by Visible Light, Nanoscale, vol.8, pp.9004-9008, 2016.

R. C. Reid, S. R. Jones, D. P. Hickey, S. D. Minteer, and B. K. Gale, Modeling Carbon
URL : https://hal.archives-ouvertes.fr/hal-01169279

, Nanotube Connectivity and Surface Activity in a Contact Lens Biofuel Cell. Electrochim. Acta, vol.203, pp.30-40, 2016.

P. Ó-conghaile, M. Falk, D. Macaodha, M. E. Yakovleva, C. Gonaus et al., Fully Enzymatic Membraneless Glucose|Oxygen Fuel Cell That Provides 0.275 mA cm -2 in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data, Anal. Chem, vol.88, pp.2156-2163, 2016.

F. Giroud, K. Sawada, M. Taya, and S. Cosnier, , vol.5, p.5

, Derivative-Carbon Nanotube Electrodes for NADH Electrooxidation and Oriented Immobilization of

, Multicopper Oxidases for the Development of Glucose/O 2 Biofuel Cells, Biosens. Bioelectron, vol.87, pp.957-963, 2017.

S. Yoshino, T. Miyake, T. Yamada, K. Hata, and M. Nishizawa, Molecularly Ordered Bioelectrocatalytic Composite Inside a Film of Aligned Carbon Nanotubes, Adv. Energy Mater, vol.3, pp.60-64, 2013.

H. Muguruma, H. Iwasa, H. Hidaka, and A. Hiratsuka,

R. Kontani, S. Tsujimura, and K. Kano, Air Diffusion Biocathode with CueO as Electrocatalyst Adsorbed on Carbon Particle-Modified Electrodes, Bioelectrochemistry, vol.76, pp.10-13, 2009.

N. Lalaoui, A. De-poulpiquet, R. Haddad, A. Le-goff, M. Holzinger et al.,

M. Mermoux, P. Infossi, N. Mano, and E. Lojou, A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes, Chem. Commun, vol.51, pp.7447-7450, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145429

S. Shleev, G. Shumakovich, O. Morozova, and A. Yaropolov, Stable 'Floating' Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase, Fuel Cells, vol.10, pp.726-733, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552369

T. Nakagawa, H. Mita, H. Kumita, H. Sakai, Y. Tokita et al.,

, Water-Repellent-Treated Enzymatic Electrode for Passive Air-Breathing Biocathodic Reduction of Oxygen, Electrochem. Commun, vol.36, pp.46-49, 2013.

K. So, M. Onizuka, T. Komukai, Y. Kitazumi, O. Shirai et al., Binder/Surfactant-Free Biocathode with Bilirubin Oxidase for Gas-Diffusion-Type System, Electrochem. Commun, vol.66, pp.58-61, 2016.

, Based Biofuel Cell Powered by Glucose in Ubiquitous Liquids, Electrochem. Commun, vol.45, pp.44-47, 2014.

C. Lau, M. J. Moehlenbrock, R. L. Arechederra, A. Falase, K. Garcia et al.,

S. D. Minteer, S. Banta, G. Gupta, and S. Babanova, Paper Based Biofuel Cells: Incorporating Enzymatic Cascades for Ethanol and Methanol Oxidation, Int. J. Hydrogen Energy, vol.40, pp.14661-14666, 2015.

C. W. Narvaez-villarrubia, F. Soavi, C. Santoro, C. Arbizzani, A. Serov et al., Self-Feeding Paper Based Biofuel Cell/Self-Powered Hybrid ?-Supercapacitor Integrated System, Biosens. Bioelectron, vol.86, pp.459-465, 2016.

L. Mi, J. Yu, F. He, L. Jiang, Y. Wu et al.,

, Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability, J. Am. Chem. Soc, vol.139, pp.10441-10446, 2017.

C. M. Moore, S. D. Minteer, R. S. Martin, and . Microchip, Based Ethanol/Oxygen Biofuel Cell

D. Desmaële, T. T. Nguyen-boisse, L. Renaud, and S. Tingry, Integration of Cantilevered Porous Electrodes into Microfluidic Co-Laminar Enzymatic Biofuel Cells: Toward Higher Enzyme Loadings for Enhanced Performance, Microelectron. Eng, vol.165, pp.23-26, 2016.

D. Pankratov, L. Ohlsson, P. Gudmundsson, S. Halak, L. Ljunggren et al.,

, Ex vivo Electric Power Generation in Human Blood Using an Enzymatic Fuel Cell in a Vein Replica, RSC Adv, vol.6, pp.70215-70220, 2016.

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev, vol.104, pp.4245-4270, 2004.

M. Skunik-nuckowska, K. Grzejszczyk, K. Stolarczyk, R. Bilewicz, and P. Kulesza,

, Integration of Supercapacitors with Enzymatic Biobatteries toward More Effective Pulse-Powered Use in Small-Scale Energy Harvesting Devices, J. Appl. Electrochem, vol.44, pp.497-507, 2014.

T. Hanashi, T. Yamazaki, W. Tsugawa, S. Ferri, D. Nakayama et al., BioCapacitor-A Novel Category of Biosensor, Biosens. Bioelectron, vol.24, pp.1837-1842, 2009.

K. Monsalve, I. Mazurenko, N. Lalaoui, A. Le-goff, M. Holzinger et al.,

J. Y. Lojou, M. T. Giudici-orticoni, and S. Cosnier, A H 2 /O 2 Enzymatic Fuel Cell as a Sustainable Power for a Wireless Device, Electrochem. Commun, vol.60, pp.216-220, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432198

M. Bourourou, K. Elouarzaki, N. Lalaoui, C. Agnes, A. Le-goff et al., Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl)Anthraquinone for Direct Electron Reduction of Oxygen, Chemistry, vol.19, pp.9371-9375, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01653054

H. Xia, Y. Kitazumi, O. Shirai, and K. Kano, Enhanced Direct Electron Transfer-Type Bioelectrocatalysis of Bilirubin Oxidase on Negatively Charged Aromatic Compound-Modified Carbon Electrode, J. Electroanal. Chem, vol.763, pp.104-109, 2016.

I. Matanovic, S. Babanova, M. S. Chavez, and P. Atanassov,

, Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study, J. Phys. Chem. B, vol.120, pp.3634-3641, 2016.

F. Tasca, W. Harreither, R. Ludwig, J. J. Gooding, L. C. Gorton et al.,

, Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface, Anal. Chem, vol.83, pp.3042-3049, 2011.

M. Minson, M. T. Meredith, A. Shrier, F. Giroud, D. Hickey et al.,

D. High, Performance Glucose/O 2 Biofuel Cell: Effect of Utilizing Purified Laccase with

, Anthracene-Modified Multi-Walled Carbon Nanotubes, J. Electrochem. Soc, vol.159, pp.166-170, 2012.

M. Pellissier, F. Barrière, A. J. Downard, and D. Leech, Improved Stability of Redox Enzyme Layers on Glassy Carbon Electrodes via Covalent Grafting, Electrochem. Commun, vol.10, pp.835-838, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283499

J. Shim, G. Kim, and S. Moon, Covalent Co-Immobilization of Glucose Oxidase and Ferrocenedicarboxylic Acid for an Enzymatic Biofuel Cell, J. Electroanal. Chem, vol.653, pp.14-20, 2011.

D. Bari, C. Shleev, S. De-lacey, A. L. Pita, and M. , Laccase-Modified Gold Nanorods for

, Eelectrocatalytic Reduction of Oxygen, Bioelectrochemistry, vol.107, pp.30-36, 2016.

F. A. Al-lolage, P. N. Bartlett, S. Gounel, P. Staigre, and N. Mano, Site-Directed Immobilization of Bilirubin Oxidase for Electrocatalytic Oxygen Reduction, ACS Catal, vol.9, pp.2068-2078, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02110777

A. Soozanipour and A. Taheri-kafrani,

, Xylanase on Functionalized Magnetic Nanoparticles and Determination of Its Activity and Stability

, Chem. Eng. J, vol.270, pp.235-243, 2015.

N. Balistreri, D. Gaboriau, C. Jolivalt, and F. Launay, Covalent Immobilization of Glucose Oxidase on Mesocellular Silica Foams: Characterization and Stability Towards Temperature and Organic Solvents, J. Mol. Catal. B: Enzym, vol.127, pp.26-33, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281753

M. A. Ghanem, J. Chrétien, A. Pinczewska, J. D. Kilburn, and P. N. Bartlett, Covalent Modification of Glassy Carbon Surface with Organic Redox Probes through Diamine Linkers Using Electrochemical and Solid-Phase Synthesis Methodologies, J. Mater. Chem, vol.18, pp.4917-4927, 2008.

M. Sosna, H. Boer, and P. N. Bartlett, A His-Tagged Melanocarpus albomyces Laccase and its Electrochemistry upon Immobilisation on NTA-Modified Electrodes and in Conducting Polymer Films, ChemPhysChem, vol.14, pp.2225-2231, 2013.

O. Choi, B. C. Kim, J. H. An, K. Min, Y. H. Kim et al.,

, Biosensor Based on the Self-Entrapment of Glucose Oxidase within Biomimetic Silica Nanoparticles Induced by a Fusion Enzyme, Enzyme Microb. Technol, vol.49, pp.441-445, 2011.

R. R. Naik, M. M. Tomczak, H. R. Luckarift, J. C. Spain, and M. O. Stone, Entrapment of Enzymes and Nanoparticles Using Biomimetically Synthesized Silica, Chem. Commun, vol.0, pp.1684-1685, 2004.

C. Liu, S. Alwarappan, Z. Chen, X. Kong, and C. Z. Li, Membraneless Enzymatic Biofuel Cells Based on Graphene Nanosheets, Biosens. Bioelectron, vol.25, pp.1829-1833, 2010.

D. Ivnitski, K. Artyushkova, R. A. Rincon, P. Atanassov, H. R. Luckarift et al., Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-catalyzed Direct Electron Transfer, Small, vol.4, pp.357-364, 2008.

A. Franco, S. Cebrian-garcia, D. Rodriguez-padron, and A. R. Puente-santiago,

M. J. Munoz-batista, A. Caballero, A. Balu, A. Romero, and R. Luque, Encapsulated Laccases As Effective Electrocatalysts for Oxygen Reduction Reactions, ACS Sustainable Chem. Eng, vol.6, p.11058, 2018.

V. Grippo, J. Paw?owska, J. F. Biernat, and R. Bilewicz, Synergic Effect of Naphthylated Carbon Nanotubes and Gold Nanoparticles on Catalytic Performance of Hybrid Films Containing Bilirubin Oxidase for the Dioxygen Reduction, Electroanalysis, vol.29, pp.103-109, 2017.

G. Wu, Z. Yao, B. Fei, and F. Gao, An Enzymatic Ethanol Biosensor and Ethanol/Air Biofuel Cell Using Liquid-Crystalline Cubic Phases as Hosting Matrices to Co-Entrap Enzymes and Mediators

, J. Electrochem. Soc, vol.164, pp.82-86, 2017.

S. Wang, T. Chen, Z. Zhang, D. Pang, and K. Wong, Effects of Hydrophilic Room-Temperature Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate on Direct Electrochemistry and Bioelectrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films, Electrochem. Commun, vol.9, pp.1709-1714, 2007.

K. V. Nguyen and S. D. Minteer, Investigating DNA Hydrogels as a New Biomaterial for

, Enzyme Immobilization in Biobatteries. Chem. Commun, vol.51, pp.13071-13073, 2015.

S. El-ichi, A. Zebda, A. Laaroussi, N. Reverdy-bruas, D. Chaussy et al., Chitosan Improves Stability of Carbon Nanotube Biocathodes for Glucose Biofuel Cells, Chem. Commun, vol.50, pp.14535-14538, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083956

B. Reuillard, C. Abreu, N. Lalaoui, A. Le-goff, M. Holzinger et al.,

S. Cosnier, One-Year Stability for a Glucose/Oxygen Biofuel Cell Combined with pH Reactivation of the Laccase/Carbon Nanotube Biocathode, Bioelectrochemistry, vol.106, pp.73-76, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01388118

A. B. Tahar, A. Szymczyk, S. Tingry, P. Vadgama, M. Zelsmann et al., One-Year stability of Glucose Dehydrogenase Confined in a 3D Carbon Nanotube Electrode with Coated Poly-Methylene Green: Application as Bioanode for a Glucose Biofuel Cell, J. Electroanal. Chem, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02167149

,

X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li et al.,

C. , Enzyme-MOF (Metal-Organic Framework) Composites, Chem. Soc. Rev, vol.46, pp.3386-3401, 2017.

S. Patra, S. Sene, C. Mousty, C. Serre, A. Chausse et al.,

, Enzyme Encapsulation in Metal-Organic Frameworks for Applications in Catalysis, vol.19, pp.4082-4091, 2017.

X. Liu, W. Qi, Y. Wang, R. Su, and . He, Z. A Facile Strategy for Enzyme Immobilization with

, Highly Stable Hierarchically Porous Metal-Organic Frameworks, vol.9, pp.17561-17570, 2017.

H. Cabana, J. P. Jones, and S. N. Agathos, Preparation and Characterization of Cross-Linked

, Laccase Aggregates and Their Application to the Elimination of Endocrine Disrupting Chemicals, J. Biotechnol, vol.132, pp.23-31, 2007.

O. Barbosa, C. Ortiz, Á. Berenguer-murcia, R. Torres, and R. C. Rodrigues,

R. Fernandez-lafuente, Glutaraldehyde in Bio-Catalysts Design: a Useful Crosslinker and a Versatile Tool in Enzyme Immobilization, RSC Adv, vol.4, pp.1583-1600, 2014.

H. Q. Xia, Y. Kitazumi, O. Shirai, and K. Kano, Direct Electron Transfer-Type Bioelectrocatalysis of Peroxidase at Mesoporous Carbon Electrodes and Its Application for Glucose Determination Based on Bienzyme System, Anal. Sci, vol.33, pp.839-844, 2017.

T. Bahar, Preparation of a Ferrocene Mediated Bioanode for Biofuel Cells by MWCNTs, Polyethylenimine and Glutaraldehyde: Glucose Oxidase Immobilization and Characterization

, Asia-Pac. J. Chem. Eng, vol.11, pp.981-988, 2016.

T. Beneyton, A. El-harrak, A. D. Griffiths, P. Hellwig, and V. Taly, Immobilization of CotA, an Extremophilic Laccase from Bacillus subtilis, on Glassy Carbon Electrodes for Biofuel Cell Applications, Electrochem. Commun, vol.13, pp.24-27, 2011.

S. Rengaraj, P. Kavanagh, and D. Leech, A Comparison of Redox Polymer and Enzyme Co-Immobilization on Carbon Electrodes to Provide Membrane-Less Glucose/O 2 Enzymatic Fuel Cells with Improved Power Output and Stability, Biosens. Bioelectron, vol.30, pp.294-299, 2011.

F. Lopez, S. Zerria, A. Ruff, and W. Schuhmann, An O 2 Tolerant Polymer/Glucose Oxidase

T. Ohsaka, A Glucose/O 2 Biofuel Cell Using Recombinant Thermophilic Enzymes, Int. J. Electrochem. Sc, vol.7, pp.1071-1078, 2012.

P. Kwan, C. L. Mcintosh, D. P. Jennings, R. C. Hopkins, S. K. Chandrayan et al.,

M. W. Adams and A. K. Jones, The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance, J. Am. Chem. Soc, vol.137, pp.13556-13565, 2015.

Z. Zhu and Y. H. Zhang, In Vitro Metabolic Engineering of Bioelectricity Generation by the Complete Oxidation of Glucose, vol.39, pp.110-116, 2017.

A. S. Campbell, H. Murata, S. Carmali, K. Matyjaszewski, M. F. Islam et al.,

, Polymer-Based Protein Engineering Grown Ferrocene-Containing Redox Polymers Improve Current Generation in an Enzymatic Biofuel Cell, Biosens. Bioelectron, vol.86, pp.446-453, 2016.

R. C. Rodrigues, C. Ortiz, A. Berenguer-murcia, R. Torres, and R. Fernandez-lafuente,

, Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev, vol.42, pp.6290-6307, 2013.

T. S. Wong and U. Schwaneberg, Protein Engineering in Bioelectrocatalysis. Curr. Opin

. Biotechnol, , vol.14, pp.590-596, 2003.

V. G. Eijsink, S. Gaseidnes, T. V. Borchert, and B. Van-den-burg, Directed Evolution of Enzyme Stability, Biomol. Eng, vol.22, pp.21-30, 2005.

N. Yuhashi, M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro et al., Development of a Novel Glucose Enzyme Fuel Cell System Employing Protein Engineered PQQ Glucose Dehydrogenase, Biosens. Bioelectron, vol.20, pp.2145-2150, 2005.

S. Tanaka, S. Igarashi, S. Ferri, and K. Sode, Increasing Stability of Water-Soluble PQQ

, Glucose Dehydrogenase by Increasing Hydrophobic Interaction at Dimeric Interface, BMC Biochem, vol.6, p.1, 2005.

D. M. Mate, D. Gonzalez-perez, M. Falk, R. Kittl, M. Pita et al.,

R. Ludwig, S. Shleev, and M. Alcalde, Blood Tolerant Laccase by Directed Evolution, Chem. Biol, vol.20, pp.223-231, 2013.

A. R. Pereira, R. A. Luz, F. C. Lima, and F. N. Crespilho, Protein Oligomerization Based on Brønsted Acid Reaction, ACS Catal, vol.7, pp.3082-3088, 2017.

E. Campbell, M. Meredith, S. D. Minteer, and S. Banta, Enzymatic Biofuel Cells Utilizing a Biomimetic Cofactor, Chem. Commun, vol.48, pp.1898-1900, 2012.

H. Chen, Z. G. Zhu, R. Huang, Y. H. Zhang, and . Coenzyme,

T. H. Yang, M. A. Kwon, J. K. Song, J. G. Pan, and J. Rhee, Functional Display of

B. Pseudomonas, Lipases Using a Translocator Domain of EstA Autotransporter on the Cell Surface of Escherichia coil, J. Biotechnol, vol.146, pp.126-129, 2010.

P. Samuelson, E. Gunneriusson, P. A. Nygren, and S. Stahl, Display of Proteins on Bacteria

. Biotechnol, , vol.96, pp.129-154, 2002.

P. S. Daugherty, Protein Engineering with Bacterial Display, Curr. Opin. Struct. Biol, vol.17, pp.474-480, 2007.

A. C. Jahns and B. H. Rehm, Relevant uses of surface proteins -display on self-organized biological structures, Microb. Biotechnol, vol.5, pp.188-202, 2012.

X. Tang, B. Liang, T. Yi, G. Manco, and . Ilariapalchetti,

A. Liu, Cell Surface Display of

, Organophosphorus Hydrolase for Sensitive Spectrophotometric Detection of P-Nitrophenol Substituted Organophosphates, Enzyme Microb. Technol, vol.55, pp.107-112, 2014.

J. Lee, K. Shin, J. Pan, and C. Kim, Surface-Displayed Viral Antigens on Salmonella carrier Vaccine, Nat. Biotech, vol.18, pp.645-648, 2000.

U. Binder, G. Matschiner, I. Theobald, and A. Skerra, High-Throughput Sorting of an Anticalin Library via EspP-Mediated Functional Display on the Escherichia coli Cell Surface, J. Mol. Biol, vol.400, pp.783-802, 2010.

M. Saleem, H. Brim, S. Hussain, M. Arshad, and M. B. Leigh, Zia ul, h. Perspectives on Microbial Cell Surface Display in Bioremediation, Biotechnol. Adv, vol.26, pp.151-161, 2008.

Z. Jin, S. Han, L. Zhang, S. Zheng, Y. Wang et al., Utilization of

, Lipase-Displaying Pichia pastoris Whole-Cell Biocatalysts to Improve Biodiesel Production in Co-Solvent Media, Bioresour. Technol, vol.130, pp.102-109, 2013.

B. Liang, G. Wang, L. Yan, H. Ren, R. Feng et al., Functional Cell Surface Displaying of Acetylcholinesterase for Spectrophotometric Sensing Organophosphate Pesticide, Sens. Actuat. B: Chem, vol.279, pp.483-489, 2019.

L. Amir, S. A. Carnally, J. Rayo, S. Rosenne, S. Melamed-yerushalmi et al.,

M. M. Meijler and L. Alfonta, Surface Display of a Redox Enzyme and Its Site-Specific Wiring to Gold Electrodes, J. Am. Chem. Soc, vol.135, pp.70-73, 2013.

S. Fishilevich;-liron-amir;-yearit-fridman;-amir-aharoni;-alfonta, L. Surface-display, and M. Mascini, Microbial Surface Display of Glucose Dehydrogenase for Amperometric Glucose Biosensor, Biosens. Bioelectron, vol.45, pp.19-24, 2013.

B. Liang, Q. Lang, X. Tang, and A. Liu, Simultaneously Improving Stability and Specificity of

, Cell Surface Displayed Glucose Dehydrogenase Mutants to Construct Whole-Cell Biocatalyst for Glucose Biosensor Application, Bioresour. Technol, vol.147, pp.492-498, 2013.

B. Liang, S. Zhang, Q. Lang, J. Song, L. Han et al.,

, Biosensor Based on Bacterial Cell-Surface Displayed Glutamate Dehydrogenase, Anal. Chim. Acta, vol.884, pp.83-89, 2015.

A. Liu, B. Liang, and R. Feng, Microbial Surface Displaying Formate Dehydrogenase and Its Application in Optical Detection of Formate, Enzyme Microb. Technol, vol.91, pp.59-65, 2016.

H. Wang, Q. Lang, L. Li, B. Liang, X. Tang et al.,

, Surface Displaying Glucose Oxidase as Whole-Cell Biocatalyst: Construction, Characterization, and Its Electrochemical Glucose Sensing Application, Anal. Chem, vol.85, pp.6107-6112, 2013.

Q. Lang, F. Wang, L. Yin, M. Liu, V. A. Petrenko et al., Specific Probe Selection from

, Landscape Phage Display Library and Its Application in Enzyme-Linked Immunosorbent Assay of Free Prostate-Specific Antigen, Anal. Chem, vol.86, pp.2767-2774, 2014.

L. Han and A. Liu, Novel Cell-Inorganic Hybrid Catalytic Interfaces with Enhanced Enzymatic Activity and Stability for Sensitive Biosensing of Paraoxon, ACS Appl. Mater. Interfaces, vol.9, pp.6894-6901, 2017.

L. Han, H. Xia, L. Yin, V. A. Petrenko, and A. Liu,

, Selective Recognition Interface for Sensitive Total Prostate-Specific Antigen Immunosensor, Biosens. Bioelectron, vol.106, pp.1-6, 2018.

L. Xia, B. Liang, L. Li, X. Tang, I. Palchetti et al., Direct Energy Conversion from Xylose Using Xylose Dehydrogenase Surface Displayed Bacteria Based Enzymatic Biofuel Cell, Biosens. Bioelectron, vol.44, pp.160-163, 2013.

R. Feng, B. Liang, C. Hou, D. Han, L. Han et al.,

R. Wilson and A. P. Turner, Glucose Oxidase: An Ideal Enzyme, Biosens. Bioelectron, vol.7, pp.165-185, 1992.

Z. Brusova, L. Gorton, and E. Magner, Comment on "Direct Electrochemistry and Electrocatalysis of Heme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids, Langmuir, vol.22, pp.11453-11455, 2006.

P. Scodeller, R. Carballo, R. Szamocki, L. Levin, F. Forchiassin et al.,

, Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide, J. Am. Chem. Soc, vol.132, pp.11132-11140, 2010.

R. D. Milton, F. Giroud, A. E. Thumser, S. D. Minteer, and R. C. Slade, Bilirubin Oxidase Bioelectrocatalytic Cathodes: The Impact of Hydrogen Peroxide, Chem. Commun, vol.50, pp.94-96, 2014.

I. Willner, G. Arad, and E. Katz, A Biofuel Cell Based on Pyrroloquinoline Quinone and

, Microperoxidase-11 Monolayer-Functionalized Electrodes, Bioelectrochem. Bioenerg, vol.44, pp.209-214, 1998.

E. Katz, O. Lioubashevski, and I. Willner, Magnetic Field Effects on Bioelectrocatalytic Reactions of Surface-Confined Enzyme Systems: Enhanced Performance of Biofuel Cells, J. Am. Chem. Soc, vol.127, pp.3979-3988, 2005.

A. Koushanpour, M. Gamella, and E. Katz, A Biofuel Cell Based on Biocatalytic Reactions of

, Lactate on Both Anode and Cathode Electrodes -Extracting Electrical Power from Human Sweat, vol.29, pp.1602-1611, 2017.

A. Ruff, P. Pinyou, M. Nolten, F. Conzuelo, and W. Schuhmann, A Self-Powered Ethanol Biosensor, vol.4, pp.890-897, 2017.

F. Cheng, L. Zhu, and U. Schwaneberg, Directed Evolution 2.0: Improving and Deciphering Enzyme Properties, Chem. Commun, vol.51, pp.9760-9772, 2015.

J. P. Klinman, How Do Enzymes Activate Oxygen without Inactivating Themselves? Acc

, Chem. Res, vol.40, pp.325-333, 2007.

E. Tremey, C. Stines-chaumeil, S. Gounel, and N. Mano, Designing an O 2 -Insensitive Glucose Oxidase for Improved Electrochemical Applications, vol.4, pp.2520-2526, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618741

K. Hiraka, K. Kojima, C. Lin, W. Tsugawa, R. Asano et al.,

, Minimizing the Effects of Oxygen Interference on L-Lactate Sensors by a Single Amino Acid Mutation in Aerococcus Viridans L-Lactate Oxidase, Biosens. Bioelectron, vol.103, pp.163-170, 2018.

L. Gorton and E. Dom?;-x;-nguez, Electrocatalytic Oxidation of NAD(P)H at Mediator Modified Electrodes, Rev. Mol. Biotechnol, vol.82, pp.371-392, 2002.

F. Durand, C. Stines-chaumeil, V. Flexer, I. André, and N. Mano, Designing a Highly Active Soluble PQQ-Glucose Dehydrogenase for Efficient Glucose Biosensors and Biofuel Cells, Biochem. Biophys. Res. Commun, vol.402, pp.750-754, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00540879

I. W. Schubart, G. Göbel, F. Lisdat, and . Pyrroloquinolinequinone,

(. Dehydrogenase and . Pqq-gdh, Electrode with Direct Electron Transfer Based on Polyaniline Modified Carbon Nanotubes for Biofuel Cell Application, Electrochim. Acta, vol.82, pp.224-232, 2012.

, Produced by Glucose Oxidase Affects the Performance of Laccase Cathodes in Glucose/Oxygen Fuel Cells: FAD-Dependent Glucose Dehydrogenase as a Replacement, Phys. Chem. Chem. Phys, vol.15, pp.19371-19379, 2013.

R. D. Milton, K. Lim, D. P. Hickey, and S. D. Minteer, Employing FAD-Dependent Glucose

, Dehydrogenase Within a Glucose/Oxygen Enzymatic Fuel Cell Operating in Human Serum, Bioelectrochemistry, vol.106, pp.56-63, 2015.

I. Osadebe and D. Leech, Effect of Multi-Walled Carbon Nanotubes on Glucose Oxidation by

, Glucose Oxidase or a Flavin -Dependent Glucose Dehydrogenase in Redox -Polymer -Mediated Enzymatic Fuel Cell Anodes, vol.1, 1988.

H. Iwasa, A. Hiratsuka, K. Yokoyama, H. Uzawa, K. Orihara et al.,

, Thermophilic Talaromyces emersonii Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase Bioanode for Biosensor and Biofuel Cell Applications, ACS Omega, vol.2, pp.1660-1665, 2017.

T. C. Tan, O. Spadiut, T. Wongnate, J. Sucharitakul, I. Krondorfer et al., The 1.6 Å Crystal Structure of Pyranose Dehydrogenase from Agaricus meleagris Rationalizes Substrate Specificity and Reveals a Flavin Intermediate, PLOS ONE, issue.8, p.53567, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00576110

M. N. Zafar, F. Tasca, S. Boland, M. Kujawa, I. Patel et al., Wiring of Pyranose Dehydrogenase with Osmium Polymers of Different Redox Potentials, Bioelectrochemistry, vol.80, pp.38-42, 2010.

M. E. Yakovleva, A. Killyéni, O. Seubert, P. ;-Ó-conghaile, D. Macaodha et al.,

C. Gonaus, I. C. Popescu, C. K. Peterbauer, and S. Kjellström, Further Insights into the Catalytical Properties of Deglycosylated Pyranose Dehydrogenase from Agaricus meleagris Recombinantly Expressed in Pichia pastoris, Anal. Chem, vol.85, pp.9852-9858, 2013.

M. E. Yakovleva, C. Gonaus, K. Schropp, P. Oconghaile, D. Leech et al., Chlamydomonas reinhardtii from Oxidative Damage, Angew. Chem. Int. Ed, vol.54, pp.12329-12333, 2015.

A. Ruff, J. Szczesny, N. Markovi?, F. Conzuelo, S. Zacarias et al., A Fully Protected Hydrogenase/Polymer-Based Bioanode for High-Performance Hydrogen/Glucose Biofuel Cells, Nat. Commun, vol.9, p.3675, 2018.

F. Lopez, S. Ma, R. Ludwig, W. Schuhmann, A. Ruff et al.,

, Amperometric Biosensor for the Detection of Lactose in the Presence of High Concentrations of Glucose, Electroanalysis, vol.29, pp.154-161, 2017.

A. Barfidokht and J. J. Gooding, Approaches Toward Allowing Electroanalytical Devices to be Used in Biological Fluids, Electroanalysis, vol.26, pp.1182-1196, 2014.

N. Wisniewski and M. Reichert, Methods for Reducing Biosensor Membrane Biofouling

R. Trouillon, Z. Combs, and B. A. Patel,

, Various Electrode Membranes on Biofouling and Electrochemical Measurements. Electrochem. Commun, vol.11, pp.1409-1413, 2009.

H. Wu, C. Lee, H. Wang, Y. Hu, M. Young et al., Highly Sensitive and Stable Zwitterionic Poly

, Glucose Biosensor. Chem. Sci, vol.9, pp.2540-2546, 2018.

P. Daggumati, Z. Matharu, L. Wang, and E. Seker, Biofouling-Resilient Nanoporous Gold Electrodes for DNA Sensing, Anal. Chem, vol.87, pp.8618-8622, 2015.

S. El-ichi-ribault, J. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin et al.,

P. Cinquin, A. Zebda, and D. K. Martin, Remote Wireless Control of an Enzymatic Biofuel Cell Implanted in a Rabbit for 2 Months, Electrochim. Acta, vol.269, pp.360-366, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01773923

M. Falk, V. Andoralov, Z. Blum, J. Sotres, D. B. Suyatin et al.,

S. Shleev, Biofuel Cell as a Power Source for Electronic Contact Lenses, Biosens. Bioelectron, vol.37, pp.38-45, 2012.

M. Falk, D. Pankratov, L. Lindh, T. Arnebrant, S. Shleev et al., Miniature Direct Electron (558)

, Organic Transdermal Iontophoresis Patch with Built-in Biofuel Cell. Adv. Healthc. Mater, vol.4, pp.506-510, 2015.

M. Kizling, P. Biedul, D. Zabost, K. Stolarczyk, and R. Bilewicz, Application of Hydroxyethyl Methacrylate and Ethylene Glycol Methacrylate Phosphate Copolymer as Hydrogel Electrolyte in Enzymatic Fuel Cell, Electroanalysis, vol.28, pp.2444-2451, 2016.

X. Xiao and E. Magner, A Quasi-Solid-State and Self-Powered Biosupercapacitor Based on

, Flexible Nanoporous Gold Electrodes, Chem. Commun, vol.54, pp.5823-5826, 2018.

M. Gamella, A. Koushanpour, and E. Katz, Biofuel Cells -Activation of Micro-and Macro-Electronic Devices, Bioelectrochemistry, vol.119, pp.33-42, 2018.

S. Shleev, A. Bergel, and L. Gorton, Biological Fuel Cells: Divergence of Opinion, Bioelectrochemistry, vol.106, pp.1-2, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01922012

A. G. Mark, E. Suraniti, J. Roche, H. Richter, A. Kuhn et al., On-Chip Enzymatic Microbiofuel Cell-Powered Integrated Circuits, Lab Chip, vol.17, pp.1761-1768, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524426

H. Hu, T. Islam, A. Kostyukova, S. Ha, and S. Gupta, From Battery Enabled to Natural Harvesting: Enzymatic BioFuel Cell Assisted Integrated Analog Front-End in 130 nm CMOS for Long-Term Monitoring, IEEE Trans. Circuits Syst. I, Reg. Papers, vol.66, pp.534-545, 2018.

W. Winkler and P. Nehter, Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques

R. A. Alberty, Calculating Apparent Equilibrium Constants of Enzyme-Catalyzed Reactions at pH 7, Biochem. Mol. Biol. Educ, vol.28, pp.12-17, 2000.

A. J. Bard and L. R. Faulkner, Electrochemical Methods-Fundamental and Applications, 2001.

Y. Umasankar, D. B. Brooks, B. Brown, Z. Zhou, and R. P. Ramasamy, Three Dimensional Carbon Nanosheets as a Novel Catalyst Support for Enzymatic Bioelectrodes, Adv. Energy Mater, 2014.

X. Xiao and E. Magner, A Biofuel Cell in Non-Aqueous Solution. Chem. Commun, vol.51, pp.4859-4869, 2013.

A. Heller, Electrical Connection of Enzyme Redox Centers to Electrodes, J. Phys. Chem, vol.96, pp.3579-3587, 1992.

A. Heller and B. Feldman, Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. Rev, vol.108, pp.2482-2505, 2008.

V. Soukharev, N. Mano, and A. Heller, A Four-Electron O 2 -Electroreduction Biocatalyst Superior to Platinum and a Biofuel Cell Operating at 0.88 V, J. Am. Chem. Soc, vol.126, pp.8368-8369, 2004.

D. P. Hickey, A. J. Halmes, D. W. Schmidtke, and D. T. Glatzhofer, Electrochemical Characterization of Glucose Bioanodes Based on Tetramethylferrocene-Modified Linear Poly(ethylenimine), Electrochim. Acta, vol.149, pp.252-257, 2014.

A. Liu and J. Anzai, Ferrocene-Containing Polyelectrolyte Multilayer Films: Effects of

, Electrochemically Inactive Surface Layers on the Redox Properties, Langmuir, vol.19, pp.4043-4046, 2003.

C. Tapia, R. D. Milton, G. Pankratova, S. D. Minteer, H. Åkerlund et al., Wiring of Photosystem I and Hydrogenase on an Electrode for

, Photoelectrochemical H 2 Production by using Redox Polymers for Relatively Positive Onset Potential, vol.4, pp.90-95, 2017.

P. Pinyou, A. Ruff, S. Pöller, S. Alsaoub, S. Leimkühler et al.,

W. , Wiring of the Aldehyde Oxidoreductase PaoABC to Electrode Surfaces via Entrapment in Low Potential Phenothiazine-Modified Redox Polymers, Bioelectrochemistry, vol.109, pp.24-30, 2016.

S. Abdellaoui, R. D. Milton, T. Quah, and S. D. Minteer, NAD-Dependent Dehydrogenase Studies with a New Flavin Adenine Dinucleotide Dependent Glucose Dehydrogenase and Osmium Polymers of Different Redox Potentials, Anal. Chem, vol.84, pp.334-341, 2012.

A. Liu and J. Anzai, A Poly(4-Vinylpyridine) Derivative Bearing Os(5,6-Dmphen) 2 Cl (5,6-Dmphen=5,6-Dimethyl-1,10-Phenanthroline): a Novel Electrochemical Indicator for Detecting DNA Hybridization, Mater. Sci. Eng. C, vol.24, pp.503-505, 2004.

P. Pinyou, S. Pöller, X. Chen, and W. Schuhmann,

, Redox Polymers for Improving Biocatalysis of PQQ-sGDH Based Electrodes, Electroanalysis, vol.27, pp.200-208, 2015.

A. A. Oughli, M. Vélez, J. A. Birrell, W. Schuhmann, W. Lubitz et al.,

, Viologen-Modified Electrodes for Protection of Hydrogenases from High Potential Inactivation While Performing H 2 Oxidation at Low Overpotential, Dalton Trans, vol.47, pp.10685-10691, 2018.

F. Mao, N. Mano, and A. Heller, Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme "Wiring, Hydrogels. J. Am. Chem. Soc, vol.125, pp.4951-4957, 2003.

A. Prévoteau and N. Mano, Oxygen Reduction on Redox Mediators May Affect Glucose Biosensors Based on, Wired" Enzymes. Electrochim. Acta, vol.68, pp.128-133, 2012.

S. E. Oh and B. E. Logan, Voltage Reversal During Microbial Fuel Cell Stack Operation, J. Power Sources, vol.167, pp.11-17, 2007.

S. Yoshino, M. Oike, Y. Yatagawa, K. Haneda, T. Miyake et al., Conjunction with 14th International Conference on Biomedical Engineering (ICBME) and 5th Asia Pacific Conference on Biomechanics, 2010.

C. T. Lim and J. Goh, , 2010.

J. Galindo-de-la-rosa, N. Arjona, A. Moreno-zuria, E. Ortiz-ortega, and M. Guerra-balcázar,

J. Ledesma-garcía and L. G. Arriaga, Evaluation of Single and Stack Membraneless Enzymatic Fuel Cells Based on Ethanol in Simulated Body Fluids, Biosens. Bioelectron, vol.92, pp.117-124, 2017.

I. Shitanda, S. Nohara, Y. Hoshi, M. Itagaki, and S. Tsujimura, A Screen-Printed Circular-Type Paper-Based Glucose/O 2 Biofuel Cell, J. Power Sources, vol.360, pp.516-519, 2017.

F. Pan and T. Samaddar, Charge Pump Circuit Design, 2006.

M. Southcott, K. Macvittie, J. Halamek, L. Halamkova, W. D. Jemison et al.,

E. , Pacemaker Powered by an Implantable Biofuel Cell Operating under Conditions Mimicking the Human Blood Circulatory System -Battery Not Included, Phys. Chem. Chem. Phys, vol.15, pp.6278-6283, 2013.

E. Katz, A. F. Bückmann, and I. Willner, Self-Powered Enzyme-Based Biosensors, J. Am. Chem

. Soc, , vol.123, pp.10752-10753, 2001.

A. N. Sekretaryova, V. Beni, M. Eriksson, A. A. Karyakin, A. P. Turner et al., Cholesterol Self-Powered Biosensor. Anal. Chem, vol.86, pp.9540-9547, 2014.

I. Jeerapan, J. R. Sempionatto, A. Pavinatto, J. You, and J. Wang, Stretchable Biofuel Cells as Wearable Textile-Based Self-Powered Sensors, J. Mater. Chem. A, vol.4, pp.18342-18353, 2016.

D. Wen, L. Deng, S. Guo, and S. Dong, Self-Powered Sensor for Trace Hg 2+ Detection. Anal

. Chem, , vol.83, pp.3968-3972, 2011.

L. Deng, C. Chen, M. Zhou, S. Guo, E. Wang et al.,

, Microchip Biosensor for Endogenous Biological Cyanide, Anal. Chem, vol.82, pp.4283-4287, 2010.

T. Wang, R. D. Milton, S. Abdellaoui, D. P. Hickey, S. D. Minteer et al.,

. Arsenite/arsenate, Determination of Inhibition Mechanism and Preliminary Application to a Self-Powered Biosensor, Anal. Chem, vol.88, pp.3243-3248, 2016.

C. Hou, S. Fan, Q. Lang, and A. Liu, Biofuel Cell Based Self-Powered Sensing Platform for L-Cysteine Detection, Anal. Chem, vol.87, pp.3382-3387, 2015.

F. Conzuelo, J. Vivekananthan, and S. Pöller,

, Immunologically Controlled Biofuel Cell as a Self -Powered Biosensor for Antibiotic Residue Determination, vol.1, pp.1854-1858, 2014.

P. Gai, R. Song, C. Zhu, Y. Ji, W. Wang et al., Ultrasensitive Self-Powered Cytosensors Based on Exogenous Redox-Free Enzyme Biofuel Cells as Point-of-Care Tools for Early Cancer Diagnosis, Chem. Commun, vol.51, pp.16763-16766, 2015.

L. Wang, H. Shao, W. Wang, J. Zhang, and J. Zhu, Nitrogen-Doped Hollow Carbon Nanospheres for High-Energy-Density Biofuel Cells and Self-Powered Sensing of MicroRNA-21 and MicroRNA-141, Nano Energy, vol.44, pp.95-102, 2018.

M. Zhou, N. Zhou, F. Kuralay, J. R. Windmiller, S. Parkhomovsky et al.,

E. Katz, J. Wang, and . Self-powered, Sense-Act-Treat" System that is Based on a Biofuel Cell and Controlled by Boolean Logic, Angew. Chem. Int. Ed, vol.51, pp.2686-2689, 2012.

M. Gamella, N. Guz, J. M. Pingarron, R. Aslebagh, C. C. Darie et al., A Bioelectronic System for Insulin Release Triggered by Ketone Body Mimicking Diabetic Ketoacidosis in vitro, Chem. Commun, vol.51, pp.7618-7621, 2015.

S. Mailloux, J. Halámek, and E. Katz, A Model System for Targeted Drug Release Triggered by

, Biomolecular Signals Logically Processed through Enzyme Logic Networks, Analyst, vol.139, pp.982-986, 2014.

S. Mailloux, J. Halámek, L. Halámková, A. Tokarev, S. Minko et al.,

. Prof and . Aihua, Liu's group at Qingdao University in, 2017.

. Hong-qi, Xia received his Ph.D. degree at Kyoto University in 2017 under the supervision of

K. Prof and . Kano, He was a visiting researcher at Qingdao University (with Prof. Aihua Liu) in 2018 before he moved to Sun Yat-sen University and conducted his postdoctoral research, His research interests focus on bioelectrocatalysis and its application in biofuel cells, biosensors and bioreactors

, She then undertook postdoctoral research at the Technical University of Demark until 2016. She is currently an assistant professor at Tianjin Institute of Industrial Biotechnology, Her research interests focus on the bioelectrochemical systems, electroenzymatic synthesis and bio-nanomaterials, 2015.

, She obtained her Ph.D. degree in Analytical Chemistry from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences under the supervision of Prof, Her major research interests focus on biofuel cells, biosensors and self-powered devices, 2008.